顯示具有 vaccine 標籤的文章。 顯示所有文章
顯示具有 vaccine 標籤的文章。 顯示所有文章

2021年6月25日 星期五

次單位疫苗(高端 & Novavax)和 mRNA 疫苗的差異

之前看到網路上在吵高端和 Moderna 到底一不一樣,基本上以疫苗型態來講,是不一樣的,因為一個是 mRNA,一個是蛋白質。不過,為什麼有人說高端是把 Moderna 的東西搬過來呢?這裡要先瞭解一下生物最基本的 central dogma。生科的應該都學過 central dogma,就是一個基因序列 (DNA) 要先轉成 mRNA (transcription),再轉譯成蛋白質 (translation)。



然後,再來說一下高端和 Moderna 疫苗相同和不同地方:

1. 相同:Spike cDNA sequence(因為一個是 DNA,一個是 mRNA,所以我用 cDNA 來表示他們序列是相同的。)根據高端第一期臨床報告內寫的,他用來表現的 Spike 基因序列是根據 Moderna mRNA 的序列 [1],Moderna 的 Spike mRNA 序列是把兩個氨基酸突變,讓它更穩定 [2],蛋白結構是根據德州大學 Wrapp et al 第一個發表 Spike cryo-EM 的那篇 [3]。不過雖然 Spike 的 cDNA 序列是一樣的,但不能說技術是相同的。



2. 不同:一個是 mRNA 直接打入人體內,一個是把 cDNA 放進 expression vector,然後在動物細胞裡表現 Spike 蛋白之後,把 Spike 蛋白純化出來後,再打進人體。所以,基本上是不同的技術。另外,兩者的佐劑也不同。



那效果會不會一樣呢?很難講,因為有很多變因。

「理論上」抗原(也就是 Spike)應該會是一樣的(不看 post-translational modification,然後也都 folding properly 的話),因為都是在動物細胞裡表現,只是一個是人類細胞,一個是倉鼠細胞(CHO cells),不過雖然在細胞裡表現出來是一樣的,但純化的過程中有可能會改變蛋白質的 conformation。另外的變因就是疫苗的佐劑,不同的佐劑引起的免疫反應也會不同,然後就是 mRNA 和蛋白質引起的免疫反應也會有差,所以就算是從相同的 DNA 序列做出來的不同種的疫苗,效果也不見得會相同。

另外,最近 Novavax 的三期臨床結果出來了,效果非常的好,讓有些人認為同是次單位疫苗的高端會不會效果也這麼好。我個人是覺得 Novavax 的效果會這麼好,是因為它的佐劑會讓 Spike protein 黏在一起變得像 virus-like particle (VLP),整體結構更像病毒,高端是不是這樣就不知道了。





References:

[1] S Hsieh et al, First-in-Human Trial of a Recombinant Stabilized Prefusion SARS-CoV-2 Spike Protein Vaccine with Adjuvant of Aluminum Hydroxide and CpG 1018. medRxiv (2021)

高端的 phase I 報告裡寫它用的設計是依據這個:"S-2P protein is a recombinant version of the S protein developed by the laboratory of Dr. Barney S. Graham (Vaccine Research Center, National Institute of Allergy and Infectious Diseases[NIAID], U.S.A.), and is a stabilized prefusion S ectodomain, encoding residues 1-1208 of SARS-CoV-2 spike protein with two proline substitutions at residues 986 and 987, a “GSAS” substitution at residues 682–685 to abolish the furin cleavage site, and a T4 fibritin trimerization motif at the C-terminus."

[2] KS Corbett et al, SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature (2020)

Moderna mRNA publication: "Within 24 h of the release of genomic sequences of SARS-CoV-2 isolates on 10 January 2020, the 2P mutations were substituted into S protein residues 986 and 987 to produce prefusion-stabilized SARS-CoV-2 S(2P) protein for structural analysis and serological assay development in silico, without additional experimental validation. Within 5 days of the release of the sequence, current good manufacturing practice (cGMP) production of mRNA–LNP encoding the SARS-CoV-2 S(2P) as a transmembrane-anchored protein with the native furin cleavage site (mRNA-1273) was initiated in parallel with preclinical evaluation."

[3] Wrapp et al, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (2020)

相關文章:近期和新冠病毒抗體相關的研究










2021年6月18日 星期五

AZ/mRNA 疫苗混打的研究整理(20210725 update)

疫苗混合施打似乎是種趨勢,加拿大也加入了,因為 AZ 的罕見血栓問題,National Advisory Committee on Immunization (NACI) 前兩週也建議第一劑施打 AZ 的第二劑可以改選 Pfizer 或 Moderna。因為 Moderna 不足,第一劑施打 Moderna 的第二劑也可以改打 Pfizer。

Science / Mixing COVID-19 vaccines appears to boost immune responses

[2020-06-17 更新] NACI 宣布第一劑施打 AZ 的人第二劑建議改成 mRNA 疫苗。

CBC News / Vaccine committee says provinces should give AstraZeneca recipients a different vaccine for second dose

"An mRNA vaccine is now preferred as the second dose for individuals who received a first dose of the AstraZeneca/COVISHIELD vaccine, based on emerging evidence of a potentially better immune response from this mixed vaccine schedule," NACI said in a statement released today. The "mixed vaccine schedule" refers to the practice of using different products for the first and second doses.

Summary of National Advisory Committee on Immunization statement of June 17, 2021

For second doses, NACI recommends that:
An mRNA vaccine is now preferred as the second dose for individuals who received a first dose of the AstraZeneca/COVISHIELD vaccine, based on emerging evidence of a potentially better immune response from this mixed vaccine schedule and to mitigate the potential risk of VITT associated with viral vector vaccines.

Second doses: What you need to know
- Emerging evidence from studies in Germany suggests a potentially better immune response, including against variants of concern, when a first dose of the AstraZeneca vaccine is followed by a second dose of the Pfizer-BioNTech mRNA vaccine, compared to two doses of the AstraZeneca vaccine.
- Evidence continues to suggest a first dose of the AstraZeneca vaccine followed by a second dose of the Pfizer-BioNTech mRNA vaccine has a good safety profile. As such, NACI recommends that an mRNA COVID-19 vaccine is now preferred as the second dose for individuals who received a first dose of the AstraZeneca/COVISHIELD vaccine.
- Receiving an mRNA vaccine as a second dose also mitigates the rare risk of VITT that is associated with viral vector vaccines. The rate of VITT after the second dose of the AstraZeneca/COVISHIELD vaccine appears to be lower than with the first dose but has increased over time, with current estimates of approximately 1 per 600,000 people vaccinated.
- Individuals should consider talking to a health care professional to help understand the best option for their situation.

目前有四個臨床實驗報告,分別是英國、西班牙和德國的三個。

英國:AZ & BNT (Com-COV, Phase II)
RH Shaw et al, Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. Lancet (2021)

X Liu et al, Safety and Immunogenicity Report from the Com-COV Study – a Single-Blind Randomised Non-Inferiority Trial Comparing Heterologous And Homologous Prime-Boost Schedules with An Adenoviral Vectored and mRNA COVID-19 Vaccine. SSRN (2021)

時間:Feb 21-26, 2021

Participants: 50-69 years, total 830 participants



Combination (prime - boost):
1. AZ - AZ (10%)
2. AZ - BNT (34%)
3. BNT - BNT (21%)
4. BNT - AZ (41%)
(): 第二劑後的發燒比例

Interval: 28-day (4-week, 463 participants), 84-day (12-week, 367 participants)

疫苗反應(reactogenicity):AZ - BNT 的在第二劑後的反應,包括發燒、頭痛、肌肉痠痛、疲倦等等,比兩劑都是 AZ 的比例高,BNT - AZ 的則是第二劑後的反應比兩劑都是 BNT 的比例高。沒有比較間隔四週和十二週的差別,間隔十二週的有疫苗反應的比例是否比間隔四週的低?

免疫反應(immunogenicity):以抗 Spike IgG 的抗體量來說,第一劑施打的兩週後,BNT 是 AZ 的 6.5 倍(GMC 843 & 129 ELU/ml, respectively):四週後,BNT 是 AZ 的三倍左右(GMC 1597 & 555 ELU/ml, respectively)。免疫細胞反應的話,則是 AZ 比較高,第一劑兩週後 AZ 是 BNT 的 4.6 倍(160 vs. 35 SFC/10^6 PBMCs),四週後 AZ 則是 BNT 的 3.4 倍(54 vs. 16),不過跟兩週後的反應相比,兩者都下降了不少。

第二劑施打的 28 天後,測到的 anti-Spike IgG 抗體量 AZ/BNT 是 AZ/AZ 的 9.2 倍(GMC 12,906 ELU/ml & 1,392 ELU/ml, respectively),BNT/AZ 則只有 BNT/BNT 的一半左右(GMC 7,133 ELU/ml & 14,080 ELU/ml, respectively)。AZ/BNT 則和兩劑都是 BNT 的差不多。中和抗體量的話,AZ/BNT 則是 AZ/AZ 的 8.5 倍。他們也測了免疫 T cells 的反應,AZ/BNT (185 SFC/10^6 PBMCs)的最高,是 AZ/AZ (50 SFC) 的三倍多,BNT/BNT (80 SFC) 和 BNT/AZ (99 SFC) 的兩倍左右。

註:SFC/10^6 PBMCs = spot forming cells (SFC) per 10^6 peripheral blood mononuclear cells (PBMCs)

西班牙:AZ & BNT (CombiVacS, Phase II)
AM Borobia et al, Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet (2021)

時間:April 24 -30, 2021
Participants: 18-60 years, 663 participants (448 BNT, 225 no vaccine)
Combination:
1. AZ (prime) - BNT (boost)
2. AZ (prime) only

Interval: 8-9 weeks (273 participants, 61%), 10-12 weeks (176 participants, 39%)

疫苗反應(reactogenicity):對疫苗反應的比例,輕微的有 68%,中度的有 30%,其中打針部位疼痛的有 88%,頭痛的有 44%,肌肉酸痛的有 43%,發燒的只有 2.5%,沒有觀察到有嚴重副作用,觀察時間為第二劑施打後十四天內。

免疫反應(immunogenicity):第二劑施打十四天內便觀察到強烈的免疫反應,所以人兩週後都可檢測到中和抗體,比控制組多 45 倍,並且也有強烈的 T cell 反應。但要注意的是控制組是沒施打第二劑的,而不是兩劑都施打 AZ 或 BNT 的。

德國 #1:AZ & BNT (COVIM, Phase 2/3)
D Hillus et al, Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1-nCoV19 and BNT162b2: a prospective cohort study. medRxiv (2021)

時間:Dec 27, 2020 - May 21, 2021

Participants: 29-51 years, 340 healthcare workers

Combination & Interval:
1. BNT (prime) - BNT (boost): 3 weeks
2. AZ (prime) - BNT (boost): 10-12 weeks



疫苗反應(reactogenicity):對疫苗的反應比較嚴重情況大多是在第一劑 AZ 施打後和兩劑都是 BNT 的第二劑 BNT,包括發燒、疲憊、頭痛和肌肉酸痛等等,AZ/BNT 在第二季後的反應稍微低一點。

AZ (prime, 86%) - BNT (boost, 51.5%)
BNT (prime, 39%) - BNT (boost, 65%)
(): 第一劑或第二劑後的副作用比例

免疫反應(immunogenicity):打了第二劑的三週後,兩組的 anti-Spike IgG 抗體量差不多,中和抗體量也差不多,但是 AZ/BNT 那組的 T cell 反應比較高。

由以上知道,AZ/BNT 兩者間隔 10-12 週是可行的,疫苗的副作用在可以忍受的範圍,沒有觀察到嚴重副作用,而且免疫反應很好。限制就是沒跟 AZ/AZ 比較,不知道疫苗副作用和疫苗反應是否比較大,另外就是這個臨床試驗的參與者年紀都在六十歲以下,不知道六十歲以上是否可行,不過這個年齡層的研究英國有做。

德國 #2:AZ & BNT
R Groß et al, Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity. medRxiv (2021)

時間:not mentioned
Participants: 26, aged 25-46

Combination & Interval: 8 weeks (56 days)(都是 AZ/BNT,沒有對照組。)

疫苗反應(reactogenicity):大部分人多是第一劑 AZ (prime)後比較大,第二劑 BNT (boost)後比較小。88% 的人表示在第一劑 AZ 後有輕微到中度副作用,以頭痛、畏寒、發燒和疲憊居多。81% 的人表示在第二劑 BNT 後有輕微到中度副作用,主要是疲憊和一點肌肉酸痛。兩劑後都有的副作用是施打部位疼痛,分別為 92% (AZ) 和 85% (BNT)。相較之下,間隔四週的疫苗反應比較大,相隔八週和十二週的都還好。

免疫反應(immunogenicity):有六成的人在第一劑的兩週後就可測到抗體,IgG 在一個月到達到高峰。在第二劑的 BNT 施打一週後,所有人都可測到 IgG,九成的人可測到 IgA,但是在兩週後所有人都可測到 IgG 和 IgA,抗體量也在第二劑一週到兩週後增加了一百到八千倍,是兩劑都打 BNT 的八倍。所有人在第二劑的兩週後也都有中和抗體,對抗 VOC (variant of concern) B.1.1.7 (alpha, 英國株)的抗體是兩劑都打 BNT 的近四倍,對抗 VOC B1.351 (beta, 南非株)和 B.1.617 (delta, 印度株)的效力也比較好。另外,AZ/BNT 引起的 T cell 反應在第二劑的兩週後也很好。不過,文章裡面並沒有兩劑都是 BNT 對照組的資料,例如人數和年齡層等等,不知道是怎麼比出來的。

德國 #3:AZ & BNT/Moderna (not clinical trial, recruited from real world)
T Schmidt et al, Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nature Medicine (2021)

時間:Jan - April, 2021
Participants: 250 (mostly Saarland University Medical Center employee)

1. AZ (prime) - AZ (boost): 55, aged (mean) 48.6
2. AZ (prime) - BNT or Moderna (boost): 97, aged (mean) 40.7
3. homologous BNT/Moderna (prime) - BNT/Moderna (boost): 64, aged (mean) 44.5

註:在今年三月德國宣佈暫時停止施打 AZ 疫苗後,六十歲以上的被建議第二劑還是打 AZ,六十歲以下的則是建議換打 mRNA 疫苗,不過要選第二劑還是打 AZ 也是可以的,因此兩劑都打 AZ 的那組年齡層會比較高。

Combination & Interval:
1. AZ (prime) - AZ (boost): 10.8 weeks
2. AZ (prime) - BNT or Moderna (boost): 11.2 weeks
3. homologous BNT/Moderna (prime) - BNT/Moderna (boost): 4.3 weeks

疫苗反應(reactogenicity):大部分都出現在施打後一週內,不管第一劑還是第二劑,都有施打部位疼痛的現象。以第一劑來講,AZ 疫苗引起的反意比較大,包括發燒、畏寒、頭痛和疲憊等等。第二劑的話,AZ 產生不適感的比例少很多,mRNA 疫苗的話則不管第一劑是打 AZ 還是 mRNA 疫苗,兩者的不適感都差不多,雖然比第二劑是 AZ 的還要大,但是比第一劑打 AZ 後的小很多,且在可以忍受的範圍內。雖然英國 Com-COV 的臨床試驗中,混打的不適反應比兩者打一樣的嚴重很多,不過可能是因為英國的兩劑只相隔四週,這個結果和德國的另一個報告(Groß et al, medRvix 2021)相符合。

免疫反應(immunogenicity):所有人體內都有抗 Spike IgG 抗體,不過施打 AZ-mRNA 疫苗和兩劑 mRNA 疫苗的 IgG 比兩劑都 AZ 還要高十倍左右。中和抗體的話,AZ-mRNA 疫苗和兩劑都是 mRNA 疫苗用 sNT (surrogate neutralization test)測出來都有 100% 的抑制力(inhibitory activity),兩劑都是 AZ 的比較低。另外,AZ-mRNA 疫苗和兩劑 mRNA 疫苗可以引起顯著的 CD4+ T (helper) cells 反應,比兩劑都是 AZ 的高很多。有趣的是 AZ-mRNA 疫苗引起最高的 CD8+ (killer) T cell 反應,不只比兩劑都是 AZ 的高很多,也比兩劑都是 mRNA 疫苗的還高。

新聞稿:idw / Medical study: Mix-and-match vaccines generate a particularly strong immune response

"This provides quite striking evidence that a double dose of the AstraZeneca vaccine is not able to mobilize the body’s immune responses as strongly as the other two vaccination regimens."

其實我覺得這也不算很意外,J&J 都可以只有一劑了,AZ 為什麼需要兩劑,而且 AZ 用的還是人類體內不會有的黑猩猩腺病毒?照理說效果應該要比 J&J 還要好,一個可能的原因就是 J&J 評估過後認為第二劑並沒有讓效果更好,所以就乾脆不要第二劑。如果是這樣的話,兩劑的 AZ 沒有比第一劑 AZ 第二劑 BNT 的效果好,也算是預料之內吧?

德國 #4:AZ & BNT (CoCo Study, Phase I/II)
J Barros-Martins et al, Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nature Medicine (2021)

時間:Jan 2021 - ongoing
Participants: 1493 healthcare professionals (HCPs) from Hannover Medical School with potential contact to SARS-CoV-2, 19-64 yrs (mean = 38 yrs)

Combination & intervals:
1. AZ (prime) - BNT (boost): 2-3 months; 55 participants
2. AZ (prime) - AZ (boost): 2-3 months; 32 participants
3. BNT (prime) - BNT (boost): 21 days; 46 participants

疫苗反應(reactogenicity):n/a

免疫反應(immunogenicity):
1. AZ primed: anti-Spike IgG declined by 42%; anti-Spike IgA declined by 66% after 30 days; only 44%-53% individuals have detectable Spike-specific memory B cells; 施打兩到三週後,大多數人都有產生抗武漢株的中和抗體,但有產生抗英國株(alpha, B.1.1.7)、南非株(beta, B.1.135)和巴西株(gamma, P.1)的中和抗體的人卻不多,只有 19% (alpha), 5.7% (beta), 14% (gamma) 的人有產生中和抗體,而且中和抗體量也很低。
2. AZ/AZ: anti-Spike IgG increases 2.9-fold; Spike-specific memory B cells increases (~2.5-fold) in all individuals; 抗武漢株和英國株的中和抗體皆有增加,但抗南非株和巴西株的中和抗體沒什麼增加,也就是非常低。CD4+ (helper) 和 CD8+ (killer) T cells 皆有增加。 3. AZ/BNT: anti-Spike IgG increases 11.5-fold; Spike-specific memory B cells increases (~6.5-fold) in all individuals; 抗武漢株、英國株、南非株和巴西株的中和抗體皆大幅增加,但中和抗體量以抗武漢株的最高,再來是英國株,抗南非株和巴西株的較低。CD4+ (helper) 和 CD8+ (killer) T cells 皆有增加,而且比 AZ/AZ 組合高很多。

總結:不管在抗武漢株和 VOCs 的中和抗體,還是 T cells 免疫反應上,AZ/BNT 的效果都比 AZ/AZ 組好,而中和抗體量則和 BNT/BNT 的則差不多。

瑞典:AZ/Moderna (CoVacc)
J Normark et al, Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. NEJM (2021)

時間:March 2021 - ongoing
Participants: 88; plan to enroll up to 3000

Combination:
1. AZ/AZ: 37 participants; 28-62 yrs (mean = 46 yrs)
2. AZ/Moderna: 51 participants, 23-59 yrs (mean = 40 yrs)

Intervals: 9-12 weeks

疫苗反應(reactogenicity):頭痛、畏寒和肌肉酸痛的情況在第二劑 Moderna 組的比例比較多,但嚴重程度兩組差不多。

免疫反應(immunogenicity):
1. AZ/AZ: 第二劑施打七到十天後,anti-Spike & anti-RBD IgG 比施打當天高五倍,anti-Spike IgG 量則維持到施打後三十天後。中和抗體量則比施打當天高一倍,一個月後則比一週後高了 1.6-1.7 倍,但沒有可對抗南非株的中和抗體,和德國(#4)的結果一致。
2. AZ/Moderna: 第二季施打七到十天後,anti-Spike IgG 比施打當天高 115 倍,而且維持到施打後三十天後,anti-RBD 則比施打當天高 125 倍。中和抗體量則比施打當天高 20 倍,第二季施打七到十天後,一個月後則比一週後高了 1.6-1.7 倍,並且有抗南非株(B.1.135)的中和抗體。



(按圖可以放大)










2021年5月15日 星期六

研發出 AZ 疫苗的公司 Vaccitech

這兩個月鬧得沸沸揚揚的 AZ 疫苗血栓問題,大家可能都知道這支疫苗是英國牛津大學(Oxford University)和生技公司 AstraZeneca 合作研發的,但較少人知的大概是這支疫苗所屬公司是牛津大學的 spinout company Vaccitech ,創立者是牛津大學的教授 Adrian Hill 和 Sarah Gilbert。

Vaccitech 成立於 2016 年,主打的技術是用猩猩的 adenovirus 為載體製作疫苗,他們申請專利的兩個載體為 ChAdOx1 和 ChAdOx2,除了用在這次的新冠疫苗外,他們進入一二期臨床試驗的疫苗還有可以標靶所有 A 型流感和季節性流感的疫苗,以及用於治療的前列腺癌疫苗 [1]。

AstraZeneca plc 是一家英國瑞典公司,1999 年瑞典藥廠 Astra AB 和英國藥廠 Zeneca Group PLC 合併時成立的, 之後陸陸續續也買了不少小公司 [2],去年本來想買 Gilead,結果被拒絕了 [3]。除了這次和 Vaccitech 合作的 AZ 疫苗,他們大多數為治療癌症的藥物,包括小分子藥物和抗體藥,目標癌症有前列腺癌、肺癌、卵巢癌等等。



Vaccitech 在去年四月時宣布和 AZ 合作大量生產疫苗,兩者為非營利合作 [4]。Vaccitech 2020 年的營收為 $4.8M,但是研發費用就花了 $14.4M,總損失為 $17.7M [5]。之後經歷 AZ 疫苗的臨床試驗劑量搞錯的出包(我覺得會出現劑量搞錯這種錯誤真的很不可思議,不知道是臨床的問題,還是疫苗本身的出廠時的劑量就有問題),到後來的血栓問題、資料給錯,以至於到現在都還沒通過美國 FDA 的核准,Dr. Fauci 日前表示美國應該不需要 AZ 疫苗。AZ 疫苗第一劑的營收為 $275M,相較於輝瑞的 $15B 和 Moderna 的 $18.4B,算是很少 [6]。雖然如此,投資者仍然看好他,主要投資者 Future Planet Capital 在三月時投了 $168M 進去,他也在今年四月底於美國上市了(Nasdaq: VACC),每股價格為 $17,最後收關價為 $14.10,賣出了六百五十萬股,總金額約 $110.5M [7, 8]。

加拿大開始施打 COVISHIELD (印度廠製造的 AZ 疫苗)後也出現了幾十例血栓和幾例死亡,好幾個省份於五月決定停止施打 AZ。韓國也施打了幾百萬劑 AZ,但是尚未出現血栓問題,不過韓國打的 AZ 疫苗是韓國 SK Bioscience (CDMO) 製造的,不確定是印度廠的問題,還是因為亞洲人出現血栓的機率本來就低很多,亦或是 adenovirus 的問題,因為同樣是用 adenovirus 的嬌生 J&J 疫苗也出現血栓問題。如果一直無法找出打 AZ 疫苗後出現血栓的 risk factors,我覺得用 adenovirus 作為載體這個方法大概就死了,Vaccitech 這個主打用 adenovirus 做為載體的公司,能存活多久呢?我個人應該是不會想投資的。XD



References:

1. Vaccitech News / Phase 2 Clinical Results for Vaccitech’s Universal Influenza A Vaccine
2. Wikipedia / AstraZeneca
3. Bloomberg / AstraZeneca Approaches Gilead About Potential Merger
4. Vaccitech News / Vaccitech and Oxford University announce landmark partnership with AstraZeneca for the development and large-scale distribution of the COVID-19 vaccine candidate
5. WSJ / Shares of Oxford-AstraZeneca Covid-19 Vaccine Startup Trade Down in Debut
6. BioSpace / AstraZeneca Hits Another Bump in the Road to COVID-19 Vaccine Approval in the US
7. Fierce Biotech / Original Vaccitech investor: Biotech no COVID one-hit wonder, as IPO injects $110M for broad pipeline
8. BioSpace / AstraZeneca Vaccine Collaborator Vaccitech Snares $110.5 Million IPO










2021年2月6日 星期六

又一篇新冠病毒的小抗體研究

這集的標題雖然是駱馬的小抗體(nanobodies),但前半個小時是討論中國的 CoronaVac,同時他們也收到很多 email 詢問為什麼美國不也做 inactivated virus vaccine。



第一個用病毒做的疫苗是 Edward Jenner 的天花疫苗(smallpox, 1798),為 inactivated Vaccinia virus。第二個 Pasteur 的狂犬病疫苗(rabies, 1885),再來是黃熱症疫苗(yellow fever, 1935)和流感疫苗(influenza, 1936) [1],流感疫苗剛開始是給軍方用,因為在第一次世界大戰時美軍人力因流感而有所損失 [2]。

至於為什麼美國不用病毒做新冠病毒的疫苗呢?他們解釋是美國已經研發其他種類的疫苗很久了,包括 mRNA 疫苗和 subunit 疫苗,所以可以直接拿來用,加上大藥廠已經砸很多錢在研發新型疫苗,因此拿來研發新冠病毒疫苗相對來講反而是比較簡單的。另一個可能原因是用病毒做疫苗需要用到 BSL3 的實驗室,不方便大量生產。

關於中國的 CoronaVac,他們提到 inactivated virus vaccine 通常是用 UV 或福馬林(formalin)去 inactivate viruses,但中國的這支疫苗是用 β-propiolactone (C3H4O2),雖然它也被用來 inactivate viruses,不過它會和蛋白質反應,可能會改變蛋白結構,而且最近有幾篇研究顯示 β-propiolactone 會使 Spike 的 S1 脫離 [3, 4],而可讓免疫系統產生中和抗體的 RBD 就在 S1,如果新冠病毒疫苗少惹 S1,那疫苗效用還剩多少?另外,如果要做 inactivated viruses,也會先評估用來 inactivate 的物質會不會改變病毒結構,是否每個 batch 的品質都穩定一致。之前的疫苗之所以用 inactivated viruses,是因為當時那個年代的技術就只能用 inactivated viruses,並不是因為它比較安全,如今的科技使疫苗不再局限於用 inactivated viruses。

相關文章:近期和新冠病毒抗體相關的研究

裡面還有一段對話滿好笑的(30:25),CoronaVac 的臨床實驗是 Phase I/II 合在一起,通常是 Phase I 安全測試過了以後,換一批測試者做 Phase II。SinoVac 是一二期一起做,第一期只有七天,七天後如果沒出現問題就進入 Phase II [5]。然後其中一位就說,因為是用 inactivated viruses,如果真的有問題的話,七天後試驗者可能就掰掰了,既然七天後沒人死,就表示疫苗算是安全的。XD

(33:50) "... that the Chinese government enlisted army personnel for at least one of the phases for their trial and I thought we were critical of that for a while, but I think that's no longer a criticism."

".... yeah, we got a lot of pushback from people in China who said this is often done and it is often done, but they said it was licensed and it was actually a Phase II trial, so they should have just said it's a Phase III trial, right? instead of saying it was licensed for you."

"I think the issue there was is it okay to do that in troops, ..... I think I pointed out the U.S. can't exactly get on a moral high horse about what's been done."

還有一段莫名戳中我的笑點,是討論到 Phase III 是在中國、巴西和土耳其做的,最近還加了印尼。

(44:10) "I don't think they had enough cases in China to do the Phase III, right?"

"I think because at that point the pandemic was really under control such through lockdowns in China, they were actually having a hard time getting cases for their clinical trials, but uhh unfortunately, plenty of other countries had plenty of cases."

之後駱馬小抗體的部分是討論德國研究團隊於上個月發表在 Science 的研究。之前有提過駱馬除了正常的 IgG,還有一種只有 heavy chain 的抗體 HCAb,以及釣出小抗體的噬菌體展示(phage display)。

相關文章:Phage display 和小抗體製造

在這篇之前,德州大學(U Texas)也在去年發表過他們抗 SARS 的小抗體,他們是把 SARS Spike 打入駱馬體內,然後釣出小抗體,經過 cyro-EM 分析發現效果最好的小抗體 VHH-72 是把 Spike RBD 固定在某個 conformation,使它無法動。他們把這個小抗體測試在假新冠病毒上(pseudovirus),發現它也可以抑制新冠病毒。

相關文章:從駱馬體內得到的新冠病毒小抗體

德國的這個研究則是把新冠病毒的 Spike RBD 和用福馬林去活性過的新冠病毒打入駱馬後釣出小抗體,然後測試這些小抗體的中和效用(neutralizing activity),發現其中一株中和效果最強的小抗體 VHH E 的 IC50 可到 60 nM [6]。VHH E 和其他小抗體不太一樣,它的 CDR3 特別長,雖然和 ACE2 結合的點和之前發現的小抗體 CC12.3 和 H11-D4 相同,但方向不一樣。之前研究發現,Spike RBD trimer 通常處在一個 up & down conformation 平衡的一個狀態,較常發生的狀態是沒有或三個中只有一個 RBD 處於 up conformation。雖然三個 RBD 都為 up conformation 的狀態很少見,但只有 up conformation 才可以和 ACE2 結合,只是不知道需要幾個 RBD 為 up conformation。

他們用 cryo-EM 分析 VHH E 和 ACE2 結合的狀態,發現和 VHH E 結合的大多是三個 RBD 都為 up conformation,並且各和一個 VHH E 結合,顯示 VHH E 會把 RBD 固定在 3-up conformation,而且一旦結合,RBD 就無法變回 down conformation。不免俗的,也要試試把兩、三個 VHH 連在一起看看效果會不會更好,當然也是用常用的 (GGGS)3 linker,結果發現 IC50 可以降到 pM range (930 pM for VHH EE, 520 pM for VHH EEE)。這篇研究和其他不同的地方是他們還有測試哪些突變會逃過 VHH 的中和作用,有趣的是如果某個突變可以逃過某個 VHH,大多的情況是它會對其他 VHH 更敏感,所以如果把兩個不同的 VHH 結合在一起,便沒有突變可以逃過 VHH。相反的,雖然 VHH EEE 有很強的中和作用,single mutantion 就可以讓病毒逃掉。



References:

1. S Plotkin, History of vaccination. PNAS (2014)

2. US CDC / Influenza Historic Timeline

3. Y Cai et al, Distinct conformational states of SARS-CoV-2 spike protein. Science (2020)

4. AV Letarov et al, Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection. Biochemistry (2020)

5. Z Wu et al, Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet (2021)

6. P Koenig et al, Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science (2021)










2020年12月28日 星期一

萬用流感疫苗的第一期臨床試驗

目前大家大概都知道的,流感疫苗每年都要施打,因為流感病毒突變的很快,每年都需要預測明年可能的突變,然後製作疫苗,但因為是預測,所以疫苗的效力不穩定,預測準的話就效力比較高,不準就效力較低。

流感病毒的表面有兩個醣蛋白(glycoprotein):hemagglutinins (HA) 和 neuraminidase (NA)。流感病毒株的 H, N -- 例如西班牙流感 H1N1,便是指這兩個蛋白。流感病毒依其 H, N 分成三種:Influenza A, B, C。其中 Influenza A 又分為兩組:group 1 包括有 H1, H2, H5, H6, H8, H9, H11-13, H16,group 2 裡有 H3, H4, H7, H10, H14 和 H15。HA 蛋白是流感進入細胞的媒介,和細胞表面的 sialic acid 結合後得以進入細胞,因此目前的疫苗主要是針對 HA 做預測,目的是希望人體能夠產生對抗 HA 的抗體。


Figure / Influenza virus infection (US CDC)

HA 蛋白分為兩個部分,上面的 head domain 是基因突變較頻繁的部分,頂端是 receptor binding site,也就是 antigenic site,和細胞表面 sialic acid 結合的部位,是目前疫苗針對的標靶,但因為變化頻繁,針對 HA head 的疫苗便有 specificity,疫苗需要混合很多不同病毒株涵蓋率才會高。HA 下面的部分是 stalk domain,相較起來突變較不頻繁。也就是說,如果疫苗是針對下面的 stalk domain 的話,就可以一次針對多個病毒株,也許就不用每年都更新疫苗了。

相關文章:萬用流感疫苗的可能性


Figure / Influenza HA structure (KVR et al, JCI 2018)

不過,如果要針對 stalk domain 製作疫苗,有幾點需要考慮:

1. 因為它不是 antigenic site,不確定針對此部位的抗體是否能抑制流感病毒進入細胞?
2. 大多數人體內因為長期接受流感病毒或疫苗,體內已有針對 HA head domain 的免疫反應,所以就算打了針對 stalk domain 的疫苗,體內針對 head domain 的免疫反應會迅速作用,可能會因此讓針對 stalk domain 的疫苗無法發揮作用。
3. 那如果疫苗只有 stalk domain 而不包含 head domain 的話呢?目前為此,一些研究團隊實驗的結果是 head domain 本身很不穩定。

Mount Sinai 醫學院的 Krammer 和其同事想到的辦法是做成 HA chimeras (cHAs),就是把 H1 strain 的 stalk domain 和禽流感 H5 及 H8 的 head domain 連在一起,變成一個人體沒接觸過、新的抗原,這樣就不會引起原本針對 HA head domain 的免疫反應,使人體可以產生對抗 stalk domain 的免疫反應。

他們之前的老鼠實驗顯示,當多次把不同的 cHAs (不同的 head,但都是 H1 的 stalk)打入老鼠體內,可以老鼠產生抗 stalk 的抗體。之後他們用 H1N1 去感染被施打 cHA 疫苗的老鼠,這些老鼠的存活率和體重都比控制組(只打 BSA)的老鼠好。cHA 疫苗用的是 H1 stalk,可以保護老鼠於 H1N1 在預期之內,重要的是產生的 anti-stalk 抗體是否能夠對抗其他流感病毒株的感染。於是,他們用 H5N1 和 H6N1 去感染之打了 cHA 疫苗的老鼠,同樣顯示老鼠體內的 anti-stalk 抗體具有 cross-reactivity,對老鼠有保護作用。不過,當他們用 group 2 的 H3N2 去試驗,卻沒有明顯的保護作用,顯示帶有 H1 stalk 的 cHA 產生的抗體侷限在同樣是 group 1 的流感病毒株。

chimeric HA (cHA) 疫苗的臨床試驗目前還在第一期臨床安全測試,試驗分為兩組,接受疫苗的為 66 位十八到 39 歲的健康個體,其中有十五人接受的是 placebo。在比較兩組在施打疫苗後的抗體後。結果顯示接受 HA chimeras 的那組產生了大量的 anti-stalk 抗體。他們用 ELISA 測試產生的抗體 cross-reactivity,結果顯示抗體對 group 1 裡的 H2, H8, H9 和 H18 皆有反應,但是對 group 2 裡的 H3 沒反應,跟之前老鼠實驗的結果一致。之後,研究人員把這些人的血清打到老鼠體內,再給老鼠感染流感病毒,觀察牠們的免疫反應,結果顯示接受施打疫苗後的血清對老鼠有保護作用,但抑制病毒的效果沒預期的好。

總之,這個疫苗在第一階段的臨床安全試驗裡顯示可以使免疫系統產生大量抗體,並且可以辨識主要幾個 group 1 裡的病毒株,不過效果如何還需之後二三期的臨床試驗才知道。


Articles:

US CDC / Understanding Influenza (Flu) Infection: An Influenza Virus Binds to a Respiratory Tract Cell

Science / Innovative universal flu vaccine shows promise in first clinical test (Dec 2020)


Papers:
R Nachbagauer et al, A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nature Medicine (2020)

KV Reeth, The post-2009 influenza pandemic era: time to revisit antibody immunodominance. JCI (2018)

R Nachbagauer et al, A chimeric haemagglutinin-based influenza split virion vaccine adjuvanted with AS03 induces protective stalk-reactive antibodies in mice. Nature Vaccines (2016)

F Krammer et al, Chimeric Hemagglutinin Influenza Virus Vaccine Constructs Elicit Broadly Protective Stalk-Specific Antibodies. JVI (2013)










2020年6月30日 星期二

萬用流感疫苗的可能性

相信大家都得過流感,可能覺得流感沒什麼,不過全球每年因流感重症的人口高達三百五十萬人,超過四十萬人死亡。雖說目前有疫苗,但流感病毒是 RNA 病毒,突變率高,所以每年都需要新疫苗,而且因為不知道來年病毒會突變成什麼,只能用預測的,只能做到 best match,無法做到 perfect match。

目前流感疫苗用的大多是去活性的病毒蛋白來引起免疫反應,產生大量對抗病毒的抗體。疫苗主要用的蛋白是 HA (hemagglutinin) 和 NA (neuraminidase),位於流感病毒的表面,這兩個蛋白的基因常常突變,如果預測的不夠準的話,疫苗的效用可能就大為降低。與其每年都需要預測和更新疫苗,科學家們希望能夠研發一個萬用的 universal vaccines,一支可以對抗所有流感病毒的疫苗,近年來的策略是讓免疫系統產生各種針對流感的抗體,於是標靶蛋白須為所有流感病毒株都有、變化較少的蛋白或其片段,例如 HA 的 stalk region。

註:流感病毒的 HA 分成兩個 domains (下圖),上面的 head domain 是基因突變較頻繁的部分,頂端是 receptor binding site,下面是 stalk domain,相較起來突變較不頻繁。


Figure / Structure and classification of influenza virus hemagglutinins (E Kirkpatrick et al, Scientific Reports 2018)

人類的免疫系統,除了抗體之外,還有免疫細胞,引發免疫細胞反應,也是另一種方法。這篇研究是是想利用 cGAMP (2’,3’-cyclic guanosine monophosphate-adenosine monophosphate) 啟動肺部內的免疫細胞 CD8+ resident memory T cells (T RM cells) 對抗流感病毒。Type I interferons (IFN-Is) 是啟動免疫系統對抗病毒感染主要媒介,STING (stimulator of interferon genes)是啟動肺泡表皮細胞和免疫細胞裡 IFN 表現的訊息因子,cGAMP 則是 STING agonist。在這篇研究裡,他們用 PS (pulmonary surfactant) 作為載體把 cGAMP 和去活性的 H1N1 疫苗一起送進肺部的巨噬細胞(macrophages),再由巨噬細胞把 cGAMP 送進肺泡的表皮細胞 AECs (alveolar epithelial cells)和 APC (antigen-presenting cells),進而啟動免疫系統。


Figure / Strengthening influenza virus vaccination (Herold & Sander, Science 2020)

他們把 PS-cGAMP 和去活性的流感病毒(PS-GAMP adjuvant H1N1)一起打進老鼠,兩天後便觀察到其效用,除了早期大量增加的 NK cells 和之後強烈的 CD8+ T cells 反應,施打後兩週也觀察到大量的抗體產生,比疫苗本身引起的抗體量多十倍以上,而產生的抗體針對的不只是 H1N1 而已,還包括其他三種 -- H3N2, H5N1, H7N9。最後,PS-GAMP adjuvant H1N1 疫苗在施打兩天就可產生保護作用,引起的免疫反應還可維持至少六個月,施打疫苗一個月後還可測到 CD8+ T RM cells,保護老鼠不再受到 H1N1 和其他流感病毒株的感染。

嗯,如果在人體上也有同樣效用的話,應該也可以應用在新冠病毒的疫苗上。



Papers:

S Herold & L Sander, Toward a universal flu vaccine. Science (2020)

J Wang et al, Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science (2020)

E Kirkpatrick et al, The influenza virus hemagglutinin head evolves faster than the stalk domain. Scientific Reports (2018)










2017年11月6日 星期一

鴉片也有疫苗

北美的海洛因和 fentanyl 濫用很嚴重,每年都有很多人因為過量而死,近年 Scripps Research Institute 研發了鴉片類(opioid)疫苗,希望能解決因為海洛因和 fentanyl 過量致死的問題。

所謂的鴉片類疫苗是把八個和海洛因結構相似的 molecules 接到 tetanus toxoid core,加上做疫苗用的 adjuvants,一起打到體內,海洛因疫苗在體內會產生免疫反應。重複連打三次,刺激免疫系統後,身體會產生對抗海洛因的抗體,之後再打入海洛因的時候,抗體便會抓住海洛因,不讓它穿過 BBB (blood-brain barrier) 進到腦內,因此打了疫苗之後,再打海洛因也嗨不起來。他們前年發了篇研究是做 fentanyl 疫苗的,每個兩週幫老鼠施打一次疫苗,共施打三次,效果不錯,需要施打超過三十倍藥量的 fentanyl 才能激起神經迴路出現反應。今年六月又發了篇研究是海洛因疫苗的,這次是試在猴子身上,一樣是打三劑,施打後一個月內即有效用,並可維持八個月,沒出現不好的副作用,不過這個疫苗只對海洛因有用,對其他鴉片類藥物沒有效果。

是說我覺得這個疫苗可能只對尚未使用過鴉片類藥物的人有效,因為沒有過嗨的感覺,用了之後也不會嗨,便不會想再用,但是對嗨過的人來說,就算打了疫苗,藥物不會進到腦部,嗨不起來,但心理上仍然會追求嗨的感覺,所以反而會加量到有嗨的感覺呢?不過如果使用了很多還達不到嗨的感覺,一直嗨不起來的話,會不會累了就算了,然後就戒了呢?

如果是正在用藥的人,血中還含有海洛因的人,這時候打疫苗會不會有免疫的效果呢?還是要等戒掉了,血中的海洛因都清空了再打疫苗呢?如果可以利用疫苗清掉血中的海洛因,也許可以幫助戒藥,之後就算他戒到一半忍不住又用藥了也不會有影響,因為進不到腦部嗨不起來,只是如果利用這個疫苗戒藥物的話,應該還是會出現戒斷反應吧?



Articles:

TSRI News / TSRI Scientists Create Vaccine Against Dangerous Designer Opioids (2016)

Science / A Heroin Vaccine? (2017)

TSRI News / TSRI Anti-Heroin Vaccine Found Effective in Non-Human Primates (2017)

Science Alert / A New Vaccine Could Make The Brain Immune to Heroin And Opioids, Scientists Say (2017)


Papers:

PT Bremer et al, Combatting Synthetic Designer Opioids: A Conjugate Vaccine Ablates Lethal Doses of Fentanyl Class Drugs. Ange Chemie (2016)

PT Bremer et al, Development of a Clinically Viable Heroin Vaccine. JACS (2017)










2017年5月6日 星期六

四個關於疫苗的迷思

這個月 Science 主打疫苗的議題,這篇寫了關於疫苗的迷思和其來源 [1],這邊整理一下。

迷思一:疫苗會造成自閉症嗎?

1998 年的時候,英國的醫生 Dr. Andrew Wakefield 在 Lancet 發表了一篇論文說三合一疫苗(measles, mumps, and rubella; MMR)會引發自閉症,但是在 2004 年的時候一位記者 Brian Deer 揭露 Wakefield 有利益迴避(conflicts of interest)的問題,因為那時 Wakefield 正在申請麻疹疫苗的專利。之後,2010 年時 Lancet 把他 1998 年那篇論文撤了,英國的醫療議評會(General Medical Council)也吊銷了他的醫師執照。

目前並沒有證據顯示 MMR 會造成自閉症。2015 年的一個大數據分析,比較了有打疫苗和沒打疫苗的小孩,發現兩者間自閉症的比例並沒有差別,表示疫苗和自閉症並沒有關係 [2]。

迷思二:疫苗裡的水銀是神經毒(neurotoxin)?

2005 年的時候,美國的環境律師 Robert F. Kennedy Jr. (甘迺迪總統的外甥)發表了一篇文章說疫苗裡面的含汞物質 thimerosal (用來當防腐劑)會對腦部有影響,例如會造成自閉症。但其實從 2001 年起,thimerosal 已不被用於兒童疫苗中,CDC 的疫苗安全室主任 Frank DeStefano 表示,如果 thimerosal 會造成自閉症,那 2001 年之後自閉症兒童的人數應該會大減,但是並沒有。CDC 和 WHO 表示並沒有證據顯示疫苗中的 thimerosal 會對兒童的健康造成影響。

迷思三:拿掉疫苗中的汞會對小孩比較好嗎?

我覺得這個的標題和內容沒太大關係,和上一點的內容比較有關。那這個迷思主要說什麼呢?2000 年代中期的時候,美國一位醫生 Mark Geier 提出了汞和睾酮(testosterone)的相互作用會造成自閉症的症狀,所以認為疫苗內的汞會造成自閉,但這在這點裡不算是重點。

Geier 發現他的自閉症患者(兒童)有早熟的現象,認為是因為汞和睾酮的相互作用造成的兒童早熟(precocious puberty),於是研發了一種治療方法來治療自閉症,就是每天注射 leuprolide (Lupron) 和 chemical chelation。Leuprolide 是 GnRH receptor agonist,會降低體內性賀爾蒙(estradiol, testosterone)的生產量,通常被用來治療前列腺癌,也被用來化學閹割(chemical castration)性騷擾犯。Chelation 的意思就是螯合金屬物質,包括汞,通常用來治療重金屬中毒。雖說這個治療方法(又稱 Lupron protocol)是用來治療自閉症,但 leuprolide 本身也帶有引發癲癇(seizure)的風險,而癲癇同樣是自閉症的症狀之一。馬里蘭州的醫委會在 2011 年調查時表示用 Lupron protocol 來治療自閉症是有問題的,同時也吊銷 Geier 的醫師執照。

我猜這點想說的是用 chelator 去除汞這件事是否有比較好?但重點並不在去除汞,而是 chelator 不只會去除汞而已,而是體內所有的金屬,包括 Mg2+ 和 Ca2+ 這兩個在生體機能中很重要、不可或缺的金屬離子。

迷思四:分開打疫苗對兒童比較好

有人認為在兩歲以前要打完十四種疾病的疫苗太密集了,小孩的免疫系統可能會負荷不了,也可能對小孩的發育和健康不好。不過專家認為,小孩就算沒打疫苗,每天接觸的病原就很多了,疫苗帶的抗原相比之下算少的了,如果小孩的免疫系統每天都能對付那麼多病原,那怎麼會負荷不了疫苗。在 2015 年的一項調查裡,534 位小兒科醫師和家庭醫師中,只有 1% 認為疫苗不要在短時間內打好幾個。



References:

1. Science / Four vaccine myths and where they came from (2017)

2. A Jain et al, Autism Occurrence by MMR Vaccine Status Among US Children With Older Siblings With and Without Autism. JAMA (2015)