2025年7月28日 星期一

Google Trends 2025 年六月生技、醫藥熱門相關話題

2025 年六月,加拿大和美國在 Google Trends 上生技、醫藥相關的熱門話題和搜尋關鍵字中出現有趣的公司比較少,反而較多跟股票和 AI 有關的公司,哦還有印度公司。

▋加拿大


莫名出現不少電腦軟硬體相關公司的搜尋,包括 Alphabet/Google, NVIDIA, AMD 和微軟等等,還有加拿大藥局,例如 Rexall 和 Pharmasave。

除此之外,Rimworld Biotech 和 Oncolytics Biotech 等等幾家公司也持續上榜呱狗搜尋。

▍生技相關熱門話題


📍 NVIDIA: 台灣人大概都知道 NVIDIA,不過最近它有什麼和 biotech 有關的新聞嗎?估了一下發現兩則新聞,一個是 J&J, Amazon AWS 和 NVIDIA 合作贊助 Polyphonic AI Fund for Surgery 計畫,得獎者最高可獲得 $100,000 經費。

申請網頁:QuickFire Challenges

另一個新聞是它和生技公司 Cure51 的合作,該公司是法國生技公司,主攻癌症生存者的基因分析,想找出基因中讓他們存活下來的秘密,因此需要建立大量的資料庫和 GPU 來分析這些數據。

2025_06 加拿大 生技熱門話題

▍生技相關熱門搜尋關鍵字


這個月好多關於生技股的搜尋 😂

📍 Fortress Biotech: 這家公司沒有自己研發藥物,而是和其他公司合作幫他們將藥物上市,或是收購其他公司的藥物,也因此並沒有什麼特定領域,它覺得哪個藥有潛力就買哪個藥。

📍 Rossari Biotech: 印度化學公司,範圍很廣,包括香皂、染料和布料等等,還有寵物和牲畜類營養產品。是說為什麼這陣子那麼多印度公司的搜尋啊?

📍 IO Biotech: 專攻癌症疫苗,其核心技術為 T-win® 疫苗平台,用來把癌症抗原,例如 arginase-1, PD-L1 和 ID01 的胜肽送進體內,APCs (antigen-presenting cells) 吸收後會表現在細胞表面,用來活化免疫細胞,使它們可以殺死表現這些蛋白的癌細胞,目前它們用來治療皮膚癌的 Cylembio® 已進入第三期臨床試驗。

2025_06 加拿大 生技熱門關鍵字

▍醫藥相關熱門話題


📍 Titan Company Ltd: 又是一家印度公司,在它們的官網自我介紹為是間 lifestyle 公司,旗下品牌眾多,有賣珠寶和時尚品等等的。

📍 Legacy Pharma: 美國小分子製藥公司,最近的新聞是它收購了 InterMune。

📍 Verona Pharma: 小分子製藥公司,目前已上市的藥物是 2024 年獲得 FDA 許可,用來治療慢性呼吸道疾病(COPD, chronic obstructive pulmonary disease) 的 Ohtuvayre™ (ensifentrine),為 PDE3 (phosphodiesterase 3) 和 PDE4 抑制劑。最近的新聞 Merck 以約 $10B 鎂的價格收購該公司。

📍 Reve Pharma: 印度製藥公司(又是印度?!)

📍 Aurobindo Pharma: 印度製藥公司(又又又是印度,到底為什麼?!)

📍 Pharma Medica Research: 加拿大多倫多的 CRO

📍 MSH PHARMA: 加拿大魁北克的 CDMO,主要生產的產品包括栓劑、陰道栓劑(vaginal ovules)、各種非無菌液體,以及管制藥物。

2025_06 加拿大 醫藥熱門話題

▍醫藥相關熱門搜尋關鍵字


📍Nova Pharma: 加拿大魁北克的保健品公司,包括減重、增肌、維他命和膠原蛋白等等。

📍 Pur-Pharma: 保健品公司,一樣賣減重、增肌等等的產品,還有注射型賀爾蒙。

📍 Sun Pharma: 加拿大製藥公司,主要是生產學名藥。

2025_06 加拿大 醫藥熱門關鍵字

▋美國


除了生技股的搜尋,其次就是AI 相關的關鍵字,例如 Perplexity AI。

▍生技相關熱門話題


📍 Moleculin Biotech: 專攻癌症和病毒相關疾病的小分子生技公司,目前進入第三期臨床試驗的藥物為用來治療血癌(AML)的次世代抗生素 Annamycin。

📍 Calico Life Sciences: 專攻抗老,不過他們正在進行臨床試驗的三個藥物是用來治療腎臟病、腦部疾病和癌症。

2025_06 美國 生技熱門話題

▍生技相關熱門搜尋關鍵字


📍 Paragon Biotech: 官網的業務沒寫很清楚,看起來是顧問公司,協助其他公司進入臨床試驗、財務管理和法規等等。

📍 Bachem: 專門生產 oligonucleotides 和胜肽的 CDMO

📍 Kibow Biotech: 保健品公司

📍 Caris Life Sciences: 看起來是一個做臨床檢驗的公司,大概是類似加拿大的 Life Labs?

2025_06 美國 生技熱門關鍵字

▍醫藥相關熱門話題


密西根州檢察長 Dana Nessel 近日宣布,全美所有 55 個符合資格的州及屬地均已同意簽署一項與普度製藥(Purdue Pharma)及其所有者 Sackler 家族達成的 74 億美元和解協議。

Sackler 家族所有的普度製藥是止痛藥始康定(OxyContin)的製造商,它當初在販售時宣稱這個藥比其他鴉片類止痛藥安全,比較不容易上癮,結果造成美國的鴉片危機(opioid crisis)。

2007 年時普度製藥高層承認不實宣稱藥物的安全性,公司因此收到數千起訴訟,之後 Sackler 家族成員開始轉移公司資產,並於 2019 年的時候為公司申請破產,在申請過程中提出以返還 43 億美元換取該家族成員之後不用給予相關索賠的司法命令,去年十月遭最高法院駁回。

最近宣判的這個和解金額大部分將在頭三年內支,Sackler 家族將支付 15 億美元,普度製藥則將在第一筆支付 9 億美元,並在隨後三年內陸續支付剩餘款項。

這些資金將直接用於各社區的成癮治療、預防及康復工作。

2025_06 美國 醫藥熱門話題

▍醫藥相關熱門搜尋關鍵字


Nifty 50 — 不只印度公司,連印度股市都上估狗搜尋。😂

📍 Liminatus Pharma: 主攻癌症免疫相關,目前研發中主要的藥物是針對 CD47 的抗體,其股價在六月中從 $5 左右漲到約 $25。

📍 Eolo Pharma: 專攻減重和內分泌疾病的生技公司,目前線上的藥物只有小分子口服藥物 SANA (salicylic acid nitroalkene),目前正在第一期臨床試驗階段。

📍 Innate Pharma: 主攻癌症的免疫療法是透過三種抗體:針對自然殺手細胞的多特異性 NK Cell Engagers, ADC 和單株抗體。其中 NK Cell Engagers 是透過他們的 ANKET® (Antibody-based NK cell Engager Therapeutics) 平台找出的,針對 NK 細胞上的 NKp46 和癌細胞抗原,可透過和 NKp46,以其癌細胞抗原結合,將兩者拉在一起。

📍 Avalyn Pharma: 主攻呼吸道疾病的小分子藥物,包括肺纖維化(pulmonary fibrosis)和間質性肺病(interstitial lung diseases),其用來治療特發性肺纖維化(Idiopathic. Pulmonary Fibrosis, IPF)的藥物 AP01 目前正在第二期臨床試驗,該藥為 pirfenidone,有抗發炎和抗氧化的作用,但機制並不清楚。

📍 Athira Pharma: 主攻神經性疾病的小分子藥物,包括阿茲海默症、帕金森氏症和失智症等等,其中進入第 2/3 期臨床試驗的為用來治療阿茲海默症和帕金森氏症的 Fosgonimeton,該藥可以促進生長激素 HGF (hepatocyte growth factor)。

2025_06 美國 醫藥熱門關鍵字



☕️ 如果你喜歡這篇內容,歡迎賞一杯咖啡。😊

合作邀約: nonproscience@gmail.com
📍文稿:科普文、公司文、產業文等等
📍諮詢:實驗設計、加拿大研究所、生科產業











2025年7月22日 星期二

癌細胞如何操控粒線體?竊取能量並摧毀免疫的雙重機制

最新發表在 Nature 的兩篇研究發現癌細胞不僅會從神經元竊取健康粒線體來增強其轉移與生長能力,甚至還能將自身損壞的粒線體轉移給免疫 T 細胞,讓它喪失免疫功能。這一系列發現顯示了癌細胞如何精準操控粒線體,在腫瘤微環境中取得生存優勢。

粒線體在癌症中的雙重角色


粒線體是細胞的能量工廠,負責產生ATP,對細胞的生存至關重要。粒線體功能失調會導致能量短缺和過多的氧化物(ROS)積累,損害細胞。過去的研究已知,靠近神經的腫瘤生長速度更快,且細胞之間能夠相互轉移粒線體,例如星狀膠質細胞會將轉移粒線體給受損的神經元,幫助它存活。不過,癌細胞與神經元、免疫細胞之間是否存在粒線體交換,一直是個未解之謎。

神經元為癌細胞供能:粒線體轉移增強轉移性


Mitchell Cancer Institute 的研究團隊透過綠螢光蛋白 eGFP 和自己開發的 MitoTRACER 去標記和追蹤粒線體的動向,發現粒線體的確會在神經元和癌細胞之間轉移。由於 eGFP 在進入接收的細胞後,亮度會掉很多,所以他們開發可以永久標記粒線體轉移的 MitoTRACER,被紅螢光蛋白 mCherry 的癌細胞在接受了神經細胞轉移過來的粒線體後,mCherry 會被移除,並會永久表現 eGFP。

▫️ 增強癌細胞代謝:與神經元共同培養後,癌細胞的粒線體呼吸率顯著提高。有趣的是,與癌細胞一起培養的神經元,其粒線體量也大幅增加。

▫️ 粒線體的轉移途徑:癌細胞和神經元之間的通道:當他們用螢光蛋白 eGFP 去標記神經元的粒線體,然後將它和將乳癌細胞培養在一起,結果發現神經元和癌細胞之間會形成一個奈米通道(tunnelling nanotube),神經元的粒線體會穿過那個通道跑到乳癌細胞中。

他們也基因改造了老鼠,使牠肚子脂肪裡的神經元也帶有 eGFP 標記的粒線體,然後再把癌細胞打進脂肪中。三個禮拜後,有些癌細胞出現了螢光粒線體。

▫️ 功能恢復與增生:粒線體恢復缺陷癌細胞功能:當他們基改癌細胞,使它們缺少粒線體,讓他們不會分裂,耗氧量也很低,表示代謝有問題。不過,把它們和神經細胞一起培養五天後,這些癌細胞就恢復代謝功能了,也開始增生,表示它們可能從附近的神經細胞中獲得了功能正常的粒線體。

在老鼠和人類身上也觀察到粒線體轉移對癌症的影響:
  • 在老鼠身上:他們利用 MitoTRACER 追蹤在老鼠體內的粒線體動向,發現雖然原位瘤中只有約 5% 的癌細胞獲得了神經細胞的粒線體,但在轉移到肺部和腦部的癌細胞中,粒線體的比例例分別飆升至 27% 和 46%。也就是說,粒線體轉移大幅增加了癌細胞的轉移能力。
  • 在人體身上:分析人類前列腺腫瘤組織樣本也發現,越靠近神經的癌細胞,其粒線體的含量也越多。



癌細胞將突變粒線體轉移給免疫 T 細胞以癱瘓其功能


癌細胞本身常帶有突變的粒線體 DNA (mtDNA),這會損害其能量生成。不只如此,在腫瘤微環境中,免疫 T 細胞內的粒線體也有功能失調,而這是導致 T 細胞耗竭、無法有效攻擊癌細胞的關鍵。不過,T 細胞的中粒線體會什麼會功能失調?

日本岐阜癌症研究中心的研究團隊從 12 名不同癌症類型的患者身上採集了腫瘤浸潤淋巴細胞的 T 細胞(Tumor-Infiltrating Lymphocytes, TILs),分析它們的粒線體 DNA (mtDNA)。除此之外,他們也用 MitoDsRed 去標記癌細胞的粒線體,也用 MitoTracker Green 去標示免疫 T 細胞的粒線體,藉以追蹤它們的動向。

▫️ 共享的粒線體突變:在 12 名患者中,有 5 名的 TILs 中被檢測到 mtDNA 突變,其中三位的 TILs 和癌細胞帶有相同的 mtDNA 突變。

▫️ 粒線體的單向轉移:癌細胞和 T 細胞在共同培養超過 24 小時後,免疫 T 細胞內出現了紅色螢光,表示癌細胞的確把自己的粒線體轉移給了免疫 T 細胞。

▫️ 完全取代:癌細胞和 T 細胞在共同培養 15 天後,部分 T 細胞內的粒線逐漸消失,被來自癌細胞的粒線體完全取代,也就是同質性替換(Replacement to Homoplasmy)。

粒線體轉移的秘密通道


他們用藥物來檢測粒線體是怎麼被轉移的,發現有兩個方式:
  1. 奈米通道(Tunnelling Nanotubes, TNTs):用藥物抑制奈米通道的形成,或使用物理隔板阻止細胞直接接觸,都能大幅減少粒線體的轉移,顯示透過 TNTs 進行的直接細胞接觸是主要途徑之一。
  2. 細胞外囊泡(extracellular vesicles, EVs):使用能阻斷 EVs 釋放的藥物,同樣能顯著減少轉移。另外,即便阻止了細胞間的直接接觸,藥物仍然讓轉移率變更低,他們也從純化出的 EVs 中發現了粒線體蛋白,顯示細胞外囊泡確實能攜帶粒線體。

粒線體失調的影響:為何免疫療法會失效?


免疫 T 細胞在接收了來自癌細胞的、帶有突變的粒線體後,其功能變被破壞了,包括新陳代謝失調、提早衰老、無法形成長期記憶,以及無法被活化以進行攻擊癌細胞的任務。
  • 老鼠模型:在 T 細胞粒線體功能缺陷的老鼠中,PD-1 抑制劑的療效明顯減弱了。即使接受 PD-1 抑制劑治療,這些老鼠也無分像正常老鼠一樣增加具有攻擊力的 T 細胞。
  • 人類臨床數據:腫瘤中帶有 mtDNA 突變的皮膚癌和肺癌患者(melanoma, NSCLC)在接受 PD-1 抑制劑治療後,其無惡化存活期(progression-free survival)和總體存活期(overall survival)都比沒有 mtDNA 突變的患者要短。

結論


總結來說,癌細胞展現了令人驚訝的精密策略:一方面從神經元竊取健康的粒線體來助長自身擴散,另一方面又將受損的粒線體轉移給T細胞,以摧毀免疫防線。這也太邪惡了吧!

這一發現也直接解釋了臨床上的難題。

由於健康的T細胞是 PD-1 抑制劑等免疫療法成功的基礎,癌細胞對 T 細胞粒線體的破壞,無疑是削弱免疫療效、導致治療失敗的關鍵因素之一。



☕️ 如果你喜歡這篇內容,歡迎賞一杯咖啡。😊

合作邀約: nonproscience@gmail.com
📍 文稿:科普文、公司文、產業文等等
📍 諮詢:實驗設計、加拿大研究所、生科產業



Articles:

Nature | Cells are swapping their mitochondria. What does this mean for our health?

Nature | Mitochondrial swap from cancer to immune cells thwarts anti-tumour defences

Tumours may get supercharged by acquiring powerhouses of nerve cells | Science | AAAS


Publications:

G Hoover, S Gilbert, Curley, O. et al. Nerve-to-cancer transfer of mitochondria during cancer metastasis. Nature (2025) DOI: 10.1038/s41586-025-09176-8

H Ikeda, K Kawasei, T Nish et al. Immune evasion through mitochondrial transfer in the tumour microenvironment. Nature (2025) DOI: 10.1038/s41586-024-08439-0










2025年7月13日 星期日

練琴卡關?日本 Sony 開發「鋼琴家專用機器手」幫你突破練琴天花板

大家有學過鋼琴嗎?練鋼琴的過程中有遇到瓶頸嗎?就是好像再怎麼練,練到手都要斷了,好像還是沒有進步?

這種現象被稱為天花板效應(Ceiling Effect)或學習停滯期(Plateau)。在學習的初期,進步通常很顯著,但隨著技能趨於精熟,單靠大量的重複練習,進步幅度會越來越小,最終卡在一個難以突破的關卡。

這篇日本 Sony Computer Science Lab (Sony CSL) 和鋼琴家合作,開發出了一種機器手掌幫鋼琴家突破練琴天花板。

▋學鋼琴的天花板效應


如果學過琴大概可以了解這個感受,即便你看得懂譜,知道要彈哪個音,但並不知道要怎麼準確得彈出來,大多數的時候是自己練習,感覺那個指法,然後讓老師糾正,腦中模擬正確的彈法大概是怎樣後,再自己反覆練習。不過,有時候練了半天手指都快斷了,還是被老師說不對,就算老師示範了,但畢竟老師也不是用你的手彈,那種細微的肌肉協調與觸鍵感受,真的很難僅靠觀察和模仿就心領神會。

這時候如果有個機器手掌,你戴上去後,讓你直接感受和練習正確的彈法,減少試錯,讓手指不用那麼累,但可以很快地抓到那個感覺,這種被動式學習不就可以達到事半功倍的效果?

▋Sony 的骨骼機器人


Sony CSL 的研究團隊開發了一款手掌機器人 — 外骨格ロボット (exoskeleton robot),可以讓每根手指個別進行彎曲運動。

它的核心理念是:透過被動式訓練,直接給予使用者精確的體感資訊(Somatosensory Information),讓身體記住從未體驗過的高階動作。

這和之前研究不同的地方在於以往都是用在幫助進行簡單的運動,或是幫助初學者學習,例如重複做某個簡單的動作,或是幫助患者復健之類的,但並不知道這種被動式學習用在專家身上的效果如何。

▋專業鋼琴家的試驗


研究團隊找來 30 位專業鋼琴家試用這個骨骼機器人,這些鋼琴家都在音樂學院主修鋼琴,八歲以前就開始學琴,20 歲以前練琴時數已超過 10,000 小時,且皆為右撇子。

▍實驗一:被動訓練真的能突破瓶頸嗎?


首先,研究團隊需要先確認被動式訓練真的能幫鋼琴家突破練習天花板。

他們讓這些專業鋼琴家先在家中練習兩個禮拜,練習的項目分成複雜和簡單兩種:

  • 複雜動作組 (Complex Group):同時彈 D & F keys (食指和無名指)和同時彈 E & G keys (中指和小指),彈琴者要在「食指與無名指」和「中指與小指」之間快速地交替按鍵,「同時」是指要真的同時按下那兩個琴鍵。大家可以自己在桌上試試看,有學過鋼琴就知道這很難,我自己是無名指較無力,很難和食指同時按下去,更何況兩種交互彈。😂
  • 簡單動作組 (Simple Group):同時彈 D, E, F, G 這四個鍵。

piano keys

他們每天要每種各練 30 次,共約 10 分鐘左右,每天練兩次。研究人員會在這段期間透過感測器測量彈湊速度,確認他們的演奏速度有進入了停滯期,沒有顯著進步。

兩個禮拜後,鋼琴家們被隨機分成複雜和簡單兩組,接受骨骼機器人 30 分鐘的被動式手指訓練。

▫️ 實驗結果

只有用骨骼機器人做複雜動作訓練的鋼琴家,其彈奏速度在訓練後有明顯變快,而且這個練習效果可以維持至少一天。用機器人做簡單動作練習的表現則沒有任何改變。

可能有人會想說,會不會速度變快了,彈的就不準確了呢?

並沒有哦,雖然速度變快了,但準確度並沒有被犧牲掉。

另外,透過分析肌肉活動,發現複雜動作組的鋼琴家在訓練後,其肌肉的協調變得更有效率。

▫️ 結論:被動式感官體驗確實可以突破專家級運動技能的瓶頸,但必須是複雜的動作才有用。在專業鋼琴家身上,只需用骨骼機器人提供做 30 分鐘的被動式法訓練,就可以有效的加強肌肉協調,提升彈奏速度且依然準確。

complex practice

▍實驗二:快速且複雜的被動式訓練才有效


接著,他們測試不同的訓練方式,看是哪一項動作可以有效提升技能。

在這個試驗中,60 位參與的鋼琴家被隨機分成五組接受不同的被動式訓練。

1. 慢速複雜組 (Complex-Slow):跟實驗一的複雜指法訓練一樣,但每秒只需 D & F 和 E & G 交互彈一輪。
2. 快速複雜組 (Complex-Fast):跟實驗一的複雜指法訓練一樣,但每秒需完成 4 個交互循環。
3. 快速簡單組 (Simple-Fast):跟實驗一的簡單指法訓練一樣,但每秒需彈 4 個循環。
4. 主動練習組 (Active):沒有用骨骼機器人進行被動式訓練,而是自己練習。
5. 休息組 (Rest):不進行任何訓練。

鋼琴家在訓練前後需接受以下三種測試,用以比較訓練前後的差異。

1. 用右手彈複雜指法
2. 用左手彈複雜指法
3. 用右手彈簡單指法

鋼琴家需用自己最快的速度去進行這三種測試,每種各彈 5 秒。

▫️ 實驗結果

只有進行快速複雜被動訓練的鋼琴家在複雜指法上的速度明顯增加,其他四組在訓練前後都沒有顯著的進步,也就是說,被動式訓練只對複雜且快速的技能提升有用。

但是!雖然他們是用右手進行被動式訓練,但他們的左手技能也有進步,表示這個訓練效果是可以跨手轉移的!

coomplex vs. siimple

▍實驗三:不只提升技能,更重塑大腦。


最後,他們想知道因被動式訓練能造成的技能提升是否跟是透過影響大腦的皮質脊髓系統(corticospinal system)。

跟實驗一很類似,28 位鋼琴家被分成兩組分別進行 30 分鐘的簡單指法和複雜指法的被動式訓練,兩個訓練都是每秒完成四輪。

在訓練前和訓練後做測試:用最快的速度在 5 秒內彈 5 次複雜指法,兩手都要測試。

同時,也用 TMS (Transcranial Magnetic Stimulation) 刺激參與者大腦的運動皮質(primary motor cortices, M1),並記錄下引發的非自主性手指運動。研究團隊可透過分析被誘發的動作模式在訓練前後的變化,推測大腦中控制手指運動的神經迴路圖是否發生了重組。

▫️ 實驗結果

跟前兩個實驗一樣,只有接受複雜指法訓練的鋼琴家在彈奏速度上都明顯進度了,而且雖然只訓練右手,但左手的彈湊速度也有變快。

在大腦的影響上:

  • 受訓練的右手:控制右手的左腦運動皮質在 TMS 刺激後所引發的動作模式,在被動式訓練後產生明顯的變化。
  • 未受訓的左手: 刺激控制左手的右腦運動皮質所引發的動作模式,在訓練前後沒有任何明顯的改變。

也就是說,被動式複雜動作訓練所帶來的技能提升,和大腦皮質脊髓的神經可塑性(neuroplasticity)有關。

▋總結:突破瓶頸的關鍵在於「超前體驗」


面臨停滯期的鋼琴家可透過骨骼機器人進行被動式訓練,突破天花板效應,獲得進一步的指法精進,而且最神奇的是這種訓練效果還可以轉移到未經訓練的另一隻手上。

不過,只有快速複雜的訓練有用,簡單或速度慢的練習都沒用,也就是說突破技能瓶頸的關鍵在於體驗從未有過的、更高階的感官經驗。

不知道這種被動式訓練是指對專業鋼琴家有用嗎?如果是我這種半吊子的想練複雜的指法,也可以用骨骼機器人來讓自己練琴練得事半功倍嗎?😆



☕️ 如果你喜歡這篇內容,歡迎賞一杯咖啡。😊

合作邀約: nonproscience@gmail.com
📍 文稿:科普文、公司文、產業文等等
📍 諮詢:實驗設計、加拿大研究所、生科產業



Reference: S Furuya, T Oku et al. Surmounting the ceiling effect of motor expertise by novel sensory experience with a hand exoskeleton. Science Robotics (2025) DOI: 10.1126/scirobotics.adn3802