2019年1月18日 星期五

腸道菌洩露的你的年紀

腸道菌(gut microbiome)近來也算是個熱門的話題,不少人研究,而且它也好像和很多疾病有關,例如憂鬱症,也好像可以用來治療疾病。不過,目前為止我們對它的了解還很少,我們到底要有哪些菌才是正常的呢?為什麼了解它這麼難?

最近這篇研究顯示,腸道菌會隨著年齡變化,因此可以透過它得知一個人的年齡。美國馬里蘭州的一家 AI 新創公司 InSilico Medicine 分析了從 ENA 和 SRA 資料庫裡的資料,從中挑出 1165 位健康人類、共 3600 個的腸道菌檢體,其中三分之一的年齡層為 20-39 歲,三分之一為 40-59 歲,最後三分之一為 60-90 歲,大多為歐洲人。

他們首先利用 machine learning 去訓練程式學習,讓它從 90% 收集來的檢體中去分析 95 種腸道菌,哪些菌是從哪個年齡層來的,然後再用從那 90% 檢體中得來的資訊去預測剩下未分析的 10% 檢體是哪個年齡的,看準確度有多少。結果顯示城市預測的準確度在 3.94 年以內,他們用來分析的那 95 種菌中,只有 39 種可以用來預測年齡。

作者們發現,有的菌種會隨著年紀越年長越多,例如 Eubacterium hallii, Lactococcus lactis, P. aeruginosa;有的菌則會隨的年齡遞減,例如 Bacteroides vulgatus,一種被認為會導致 潰瘍性結腸炎的細菌,另外 C. jejuni 也是。

這個研究很有趣,不過我覺得樣本數不夠多,而且怎樣才算健康的腸道菌?地區性又是怎樣?歐美人的三十幾歲時的腸道菌落和亞洲人的三十幾歲比較又是如何?另外,飲食習慣也可能改變腸道內的菌種,例如抗生素的使用,或是飲酒習慣等等,有喝酒的健康人和沒喝酒的健康人,他們的腸道菌落一樣嗎?

另外,這篇文章中提到 American Gut Project,立刻孤狗惹一下是什麼,原來是 UCSD 醫學院的幾個教授合作的公民科學(citizen science)計畫,每個人都可以參與,基本上就是線上申請說要加入,費用 $99 鎂,他會寄給你一個 kit 讓你採集你的糞便和口腔細胞,填寫問卷(飲食習慣、生活習慣和並使等等)後寄回去,他們就會分析你的腸道菌有哪些,而且會把結果給你,包括 raw data。這個計畫在 2012 年開始,2017 年年底的時候已有超過一萬多人參與,他的姐妹計畫是歐洲的 British Gut,總共募到兩千五百萬鎂以上。

American Gut Project 的資料經過分析後顯示了幾個有趣的點,每週吃的蔬菜種類越多的人,腸道菌的種類越多樣化。另外,患有精神疾病的人,不論國家、年齡或是性別等等,他們的腸道菌落種類都很相似,有幾種菌只出現在憂鬱症患者身上。

題外話,幾年前看過一篇研究是講說胖的人和瘦的人的腸道菌落不太一樣,他們把瘦老鼠的腸道菌移植到胖老鼠體內後,胖老鼠就瘦惹 5%,而胖老鼠在做過縮胃手術後,牠的腸道菌落種類就變得和瘦老鼠相似惹,覺得這超有趣的,哪天有時間再把這篇研究找出來,順便看看是否有新進展好了。



Articles:

Science / The bacteria in your gut may reveal your true age (Jan 2019)

UCSD/ Big Data from World’s Largest Citizen Science Microbiome Project Serves Food for Thought (May 2018)


Papers:

F Galkin et al, Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. bioRxiv (2018)

D McDonald et al, American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems (2018)









2019年1月12日 星期六

你聽過自體糞便移植嗎?

大家都聽過「自體 xx 移植」吧,像是自體脂肪移植、自體皮膚移植等等,但是有聽過自體糞便移植嘛?XD

通常癌症病人在做骨髓幹細胞移植(allogeneic hematopoietic stem cell transplantation, allo-HSCT)手術後,醫生會用大量的抗生素去預防細菌感染,但是抗生素不只會殺死不好的細菌,也會殺死對身體有益的腸道菌,大量失去這些對身體有益的細菌也會可能會造成其他的感染,有什麼辦法可以在抗生素治療後把失去的腸道菌給救回來呢?這個研究用的是自己的便便,在做骨髓移植前就先把病患的便便冷凍起來,然後抗生素治療後再移植回病患的體內。

這篇研究的作者們首先分析了七百多位病患在骨髓幹細胞移植手術前和手術後的腸道菌,發現腸道菌的多樣性在手術和抗生素治療後大為下降,以指數來看的話大概只有原本的三成,然後這個情況大概持續三週後,腸道菌才開始慢慢恢復,但不見得會恢復到原本的狀態。

在自體糞便移植的臨床試驗上,他們分析了病患在骨髓移植手術後一到五週後的糞便(大多是術後十三天左右),如果健康腸道菌很少的就進入臨床試驗,他們挑了 25 位符合這個條件的病患,然後隨機把他們分成兩組,一組(11 位)在手術後接受正常的術後照顧,另一組(14 位)則接受自體糞便移植(autologous fecal microbiota transplantation, auto-FMT),移植的糞便就是病患手術前已先冷凍起來的糞便。結果顯示接受糞便移植的病患,他們的腸道有益菌在幾天內就回到和 Allo-HSCT 前相同的多樣性和菌落生態,例如術前原本就有的有益菌 Lachnospiraceae, Ruminococcaceae 和 Bacteroidetes 都回來惹,因此有助於病患的腸道系統和免疫系統的恢復。接受正常術後照顧的病患,則是花了好幾個禮拜才從抗生素治療中恢復,有的人甚至術後三個月了腸道菌的多樣性還是很低。

臨床實驗編號(ClinicalTrials.gov identifier):NCT02269150

Ok, 我知道大家都很好奇到底糞便移植是怎麼做的(有嗎?),我把移植的方法 copy 在這邊:"Auto-FMT consisted of a single procedure and was performed by rectal administration of the thawed fecal product through a retention enema."

你懂的(比手槍手勢,指~),我就不翻譯惹,大家可以用 enema administration 這個詞去 YouTube 找影片來看。😂

ps. 而且你會順便找到有人分享做 probiotic retention enema 的心得唷。😆



Article:

NIH / Fecal microbiota transplantation helps restore beneficial bacteria in cancer patients


Publication:

Y Taur et al, Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine (2018)








罕見疾病 黑尿症(alkaptonuria)

第一次聽到這個疾病,是因為無法代謝氨基酸所造成的。黑尿症(alkaptonuria, AKU),顧名思義就是尿液是黑色的,這個疾病是遺傳性隱性疾病(autosomal recessive),國中生物學過的孟德爾學說裡說的,要兩個基因都帶有突變才會顯現出來,因此需要父母雙方都帶有突變基因,並且各傳一個給小孩。

黑尿症是在 1902 時被 Archibald Garrod 所發現的,是因為負責代謝 homogentisic acid (homogentisate, HGA) 的酵素 homogentisate 1,2-dioxygenase (HGD) 突變所造成的。氨基酸中的 phenylalanine (Phe, F) 和 tyrosine (Tyr, Y) 在代謝的過程中會轉換成 HGA,HGD 接著把 HGA 轉換成 maleylacetoacetic acid,再經過幾個過程後,最後會變成水和二氧化碳。HGA 也被稱為 melanic acid (黑色素酸,這應該比較常看到),HGD 通常表現在肝臟和腎臟中,如果 HGA 無法被代謝分解掉,就會堆積在體內,隨著血液流動,然後堆積在關節和一些組織,尤其是結締組織(connective tissue),例如軟骨(cartilage)。AKU 患者的尿液在接觸空氣後會變成黑色,除此之外並沒有其他明顯著症狀,通常不會立刻被察覺。結締組織會隨著時間慢慢變成黑色,直到成年時才會顯現出來,也會出現慢性關節炎(arthritis)等症狀,大約有一半的患者在五、六十歲時就需要做換關節的手術。


Figure / iGenetics: A Molecular Approach (by PJ Russell, 3rd ed.)

PubChem: Homogentisic Acid (HGA)

這篇文章裡在英國的父親,在發現他兩週大嬰兒的尿尿是深紅色的時候,帶去給醫生看,醫生說那不是血尿,可能是因為媽媽吃了紅色甘藍菜,然後嬰兒又喝母奶,所以尿才變紅色的。父親回家後越想越不對,於是跑去詢問倫敦某醫院的專科醫生,結果檢驗結果顯示他的小孩是因為帶有某個罕見的基因突變,於是造成 AKU。醫生叫他不要上網孤狗 AKU 是什麼,因為很可怕,但他當然還是查惹。

National Organization for Rare Disorders (NORD) - Alkaptonuria

父親查了以後發現真的很可怕,於是到處尋找治療的方法,但是因為是罕見疾病,所以研究它的人也不多,也沒有藥廠想研發治療此病的藥物。經過幾番輾轉,父親得知美國某些醫生計畫進行一個藥物的臨床試驗。這個藥物是 nitisinone,是在 1980s 年代被研發出來的,原本的目的是用來除雜草的除草劑,但後來發現對魚類和老鼠有毒,只好停止。擁有 nitisinone 的公司 Zeneca Agrochemicals 於是詢問一些專家此藥是如何作用的,科學家們發現 nitisinone 是透過抑制一個叫 HPPD (4-hydroxyphenylpyruvate dioxygenase)的酵素來殺死植物的,HPPD 負責把 4-hydroxyphenylpyruvate (HPP) 轉化成 HGA,使植物無法生產葉綠素(chlorophyll)。科學家們發現了這個機制後,就打電話給 HPPD 的專家兼臨床醫師 Sven Lindstedt,沒想到 Lindstedt 說他想用 nitisinone 來治療患有第一型酪胺酸血症(type-1 hereditary tyrosinaemia, HT1)的小孩。雖然 nitisinone 帶有毒性,但跟酪胺酸血症所帶來的影響相比,還是值得一試的。Lindstedt 在 1992 年的時候把結果發表在 Lancet,結果顯示 nitisinone 的治療效果比預期的好很多。之後,瑞典公司 Swedish Orphan Biovitrum 買下此藥的專利,然後以 Orfadin® 為商品名稱在市面上販售,此藥在 2017 年的獲利為美金 $96M。

Nitisinone - PubChem, Drug Bank

因為抑制 HPPD 可以阻止 tyrosine 代謝為 HGA,於是醫生們就想到也許 nitisinone 也可以用來治療 AKU,使身體不要製造太多 HGA。這個消息一出來後,有很多病患想試試看,但是這個藥本來並不是用來治療 AKU,加上很貴,每年的治療費用為四千英鎊,在美國的話則要近三萬鎂,因此保險公司不願意給付。之後,美國政府介入,NIH 負責此藥在 AKU 上的臨床試驗,只有四十位病患參與,結果並不理想,於是終止,也因此保險公司不願意給付這個治療費用。

這位父親不願意放棄,於是開始募資作為 nitisinone 用在治療 AKU 上的研究費用。研究結果是正面的,European Commission 在 2012 年的時候決定贊助五百萬英鎊作為大型臨床研究的費用。臨床研究結果顯示 nitisinone 可以減緩 AKU 的惡化,而那位兒子也終於在去年八月終於接受了第一次的 nitisinone 治療。不過,這個藥物在美國只可被用來治療 HT1,FDA 尚未許可它被用在 AKU 的治療上。



Article:

Nature News / A father’s fight to help his sons — and fix clinical trials (Jan 2019)


Reference:

S Lindstedt et al, Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet (1992)











2019年1月6日 星期日

治療白內障的眼藥水

刷臉書的時候看到這一篇,說白內障(cataract)未來可望用眼藥水就治療好,不需要手術,於是好奇點進去看。(先說一下這是 2015 年的研究,我後面會提到之後有什麼發展。)

這是怎麼做到的呢?大家可能都知道白內障是因為水晶體變混濁造成的失明,而會變混濁是因為形成水晶體主要的蛋白質 crystallin 結塊沈澱而造成的。crystallin 內有兩大家族:α-crystallin & βγ-crystallin,是結構很穩定且有組織的蛋白質,βγ-crystallin 的結構如果被破壞的話,α-crystallin 會和它結合然後溶解它,類似一個 chaperone 的角色 [註1]。不過如果 βγ-crystallin 結構受損太多的話,就會變成一個大蛋白結塊(aggregates),然後沈澱使得水晶體變得混濁,不過這一切是怎麼發生的,為什麼會發生,目前還不清楚。

註 1:α-crystallin 由兩條 chains 組成 -- cryAA 和 cryAB,都只有 20kDa 左右,它們是 small heat shock protein (sHSP),也是 chaperone。

這篇刊在 Nature 的研究顯示 lanosterol -- 動物體內一種膽固醇(cholesterol)和賀爾蒙的前驅物(precursor) -- 可以溶解 crystallin 形成的結塊,這是怎麼發現的呢?UCSD 的實驗室主持人 Dr. Kang Zheng 和其團隊發現有對兄弟有白內障,但是他們的父母並沒有,於是研究了一下,結果發現這對兄弟的 LSS (lanosterol synthase) 基因帶有突變。LSS 的功能是負責把 (S)-2,3-oxidosqualene 轉換成 lanosterol,而這兩個突變使 LSS 喪失了其 catalysis 的功能,於是無法產生 lanosterol。基因檢測結果顯示他們的父母並沒有這種突變,因此作者們認為 lanosterol 和白內障有關。

Lanosterol: PubChem, Drug Bank

在這篇研究中,作者們在細胞中表現了會形成 aggregates 的突變 crystallin,同時也一起表現了正常的 LSS 或是突變的 LSS,結果顯示正常的 LSS 降低了結塊的 crystallin,但是突變的 LSS 並沒有。另外,在培養液中加入 lanosterol 的話,即便細胞中表現的是突變的 LSS,crystallin aggregates 也同樣降低了,但是加膽固醇的話就沒有這種效果。

接著,他們想看看 lansterol 對真正的水晶體有沒有治療效用。他們把有白內障的兔子的水晶體取出,然後泡在 25mM lanosterol 裡面六天,結果原本呈現白色混濁的水晶體變得較清澈透明了。最後,他們試驗在狗身上,被用來試驗的狗是因年紀而患有白內障的,基因檢測顯示牠們的 LSS 沒有任何突變。他們把含有 lanosterol 的 nanoparticles 用針打入狗眼睛裡的玻璃體室(vitreous cavity),實驗期間每三天打一次,控制組則打入不含 lanosterol 的 nanoparticles。除此之外,治療組的狗也被用點眼藥水的方式治療,每日點三次含有 lanosterol 的眼藥水,每次一滴(50uL),連點六個禮拜。眼藥水的溶劑為 ddH2O,濃度為 11.4g lansterol/L (25mM)。結果顯示狗的白內障情況好很多,水晶體變清澈了。

如此看起來 lanosterol 的確是有療效的,不過用在人類治療上有個瓶頸,lanosterol 分子不小並且非水溶性 [註2],因此用點眼藥水的方式是否能有效讓 lanosterol 進入水晶體並不清楚。在狗的實驗中,nanoparticles 和點眼藥水同時進行,無法得知是哪種方式造成的效果。

註 2:在他們的 in vitro 和細胞實驗中,是用 liposome 當載體或是用 DMSO 去溶。

他們的研究發表後沒幾個月,另一組團隊也做了同樣的實驗。Shanmugan et al 取得四十顆白內障患者手術後取出的水晶體,然後用 Zhang 研究裡的狗眼藥水配方去泡這些水晶體,同樣是在 25mM lansterol 裡泡了六天,但是並沒有 Zhang 在兔子實驗中出現的效果,從患者眼中取出的水晶體依然混濁。

之後,Venkatesh et al 對於這個研究發表了一個 comment,表示無法實驗無法複製的原因可能是因為水晶體的狀況不同,lanosterol 應該還是有療效的。

然後,在去年一月,有個義大利團隊發表了一篇人體試驗的研究。因為 Zhang 研究中用的 lanosterol 濃度太高了,所以他們減到 5mM,用橄欖油去溶解 lanosterol 後再用 0.2um filter 過濾消毒。白內障患者在第一週每日點兩次藥水,之後七個禮拜每日點三次,結果顯示沒有任何療效。(怎麼我覺得這個實驗很鬧啊~)

再來,去年年底時 Chen et al 發表了一篇研究表示 lanosterol 和 25-hydroxycholesterol (25HC) 都可以溶解 crystallin aggregates。他們的做法是把三位患者手術後取出的水晶體打碎,準備成濃度為 2mg/ml 的蛋白質結塊,然後加入不同濃度的 lanosterol 或是 25HC [註3],在常溫下放兩個禮拜後觀察其混濁度。結果顯示加惹 10uM lanosterol 或是 10uM 25HC 的都變清晰了,25HC 的效果比 lanosterol 好些,表示這兩者都可溶解 crystallin aggregates。

註 3:他們用來溶解 lanosterol 和 25HC 的溶劑是 5% DMSO。

雖然這篇研究同樣顯示 lanosterol 可以體外溶解 crystallin aggregates,但是想要以眼藥水的方式治療白內障,仍然有一段距離。Zhang 在自己的學校網頁上表示,他們在人類和動物的臨床試驗上,限於法規都還處於籌備階段。

話雖如此,市面上已經有人在賣了呢。有家公司號稱他們利用奈米科技可以成功把 lanosterol 送進水晶體,不需要打針,只需要滴他們的眼藥水,就可以把狗狗的白內障至好惹。他們在網頁上寫成份含有 2mg/ml lanosterol,但送進水晶體的載體為商業機密不可說。不過剛剛孤狗了一下,現在好像在 Amazon 和 eBay 上已經找不到惹。


他們申請的專利:

WO2016029199A1: Compositions and methods to treat vision disorders
WO2016029197A1: Compositions and methods to treat and/or prevent vision disorders of the lens of the eye



Articles:

Futurism / Goodbye Surgery? Scientists Just Made Eye Drops that Dissolve Cataracts (2015)

Nature / Cataracts dissolved (July 2015)

Science / A new dawn for cataracts


Papers:

G Wistow, The human crystallin gene families. Human Genomics (2012)

L Zhao et al, Lanosterol reverses protein aggregation in cataracts. Nature (2015)

PM Shanmugam et al, Effect of lanosterol on human cataract nucleus. Indian J Opthalmol (2015)

R Venkatesh et al, Comment to: Effect of lanosterol on human nuclei. Indian J Ophthalmol (2016)

A Felici et al, Lanosterol Eye Drops in a Human Juvenile Nuclear Cataract. Open J Clinical Medical Case (2018)

XJ Chen et al, Lanosterol and 25-hydroxycholesterol dissociate crystallin aggregates isolated from cataractous human lens via different mechanisms. Biochem Biophys Res Commun (2018)










2018年12月31日 星期一

阿茲罕默症是會傳染的嗎?--(續)

之前有提過有個有關阿茲罕默症(Alzheimer's disease, AD)的理論是 amyloid-β (Aβ) 是會傳染的,開始的原因是這樣的:

從二十世紀中期開始,生長激素(growth hormone, GH)被用來治療生長激素嚴重不足(growth hormone deficiency, GHD)的孩童,那時候的生長激素來源是從過世者的腦下垂體(pituitary gland)中萃取出來的(cadaveric-derived human growth hormone, c-hGH),這個方法在北美進行了近三十年,治療了全球共約三萬五千位孩童,直到 1985 年的時候,美國 FDA 收到報告說有四位曾經接受 c-hGH 治療的成人得到 Creutzfeldt–Jakob disease (CJD)[註] 後才停止。之後直到 2012 年全球有約兩百多人因此得到 CJD,經過確認後發現是因為那批 c-hGH 受到 prion 感染。但是除此之外,有八位因為接受 c-hGH 治療的人在過世後解剖時,發現腦部有嚴重的 Aβ 堆積,而這些人都還只是中壯年(36-51 yrs)而已,並且未帶有阿茲罕默症的致病突變,那他們的 AD 症狀是怎麼來的呢?

註:prion protein (PrP) 是哺乳類動物本生就有的蛋白(cellular PrP),但是當它錯誤折疊(misfolded)的時候 -- scrapie PrP,便會引起腦神經性疾病且具傳染性,在人類身上會引起 CJD,在牛身上會引發狂牛症(bovine spongiform encephalopathy, BSE)。

之前也有動物實驗顯示,當把 Aβ 病患的腦部萃取物打入健康老鼠體內後,老鼠腦部也出現 Aβ 堆積。以上種種,於是有學者們認為因為那批 c-hGH 除了受到 prion 感染,同時也有 Aβ 的污染,那八位受過 c-hGH 治療的病患之所以腦部有 Aβ 堆積是因為 Aβ 跟 prion 同樣具傳染性。

前情提要:阿茲罕默症是會傳染的嗎?

為了確認這個理論是否正確,這篇研究的作者們找到了當年帶有 prion 的那批生長激素 -- 雖然已過了三十多年。當年準備生長激素的方法有很多種,純化過程有過 size exclusion column (SEC) 的被認為可以降低 prion 的污染,而其中有一種萃取法為 Hartree-modified Wilhelmi procedure (HWP),是沒經過 SEC 這個步驟的,當初接受治療且得到得到 CJD 的病患用的那批 c-hGH 都是用 HWP 方法萃取出來的。

他們從英國的 Public Health England 那得到了當年的那幾批生長激素,然後檢測裡面是否有 Aβ 和 tau,結果發現所有用 HWP 方法萃取的 c-hGH 都含有 Aβ40 和 tau,另外除了一罐沒有 Aβ42 以外,其他用 HWP 純化的也都有 Aβ42 (他們取得的 HWP 純化的共有五罐)。用其他方法純化的則沒有檢測到任何 Aβ 和 tau。(關於阿茲罕默症的致病蛋白和突變基因可點這篇參考)

再來就是檢測這些含有 Aβ 和 tau 的生長激素是否真的能在體內形成 Aβ plaque,他們用的是帶有人類 APP 突變的基轉老鼠,這些老鼠會在六個月大的時候開始出現 Aβ 堆積的徵兆。

實驗是這樣的,他們取得三位 AD 患者的腦部檢體和一位健康者的腦部檢體,分別打入六到八週大的基轉老鼠腦內,腦部檢體是用 PBS 準備的,所以有一個控制組是只打入 PBS,每組有十五隻老鼠,之後在打入後的第 2, 7, 15, 30, 45, 60, 90, 120, 240, 360 和 480 天的時候檢視老鼠腦部看有沒有阿茲罕默症的其中一個病徵:cerebral Aβ−amyloid angiopathy (CAA) -- 腦部血管出現 Aβ 堆積。結果顯示再打入後第二天所有老鼠都沒有 Aβ 堆積,表示起始點是一樣的。在打入腦部檢體 120 天後,被打入 AD 病患腦部檢體的老鼠,牠們的腦部的某些區塊 -- 像是大腦皮質和海馬迴 -- 開始出現惹 CAA,但是只打入健康者腦部的和 PBS 的老鼠都沒有出現 Aβ。然後在 240 天(約七、八個月)後,老鼠的腦血管裡出現 Aβ,堆積情形以小腦最為明顯,但是打入健康者腦部檢體的和打入 PBS 的老鼠幾乎沒有 Aβ 堆積的情形。在打入腦部檢體快一年後(360 dpi)的情況和 240 天後的差不多,只是堆積情況更嚴重些。

再來,他們想確認人類的生長激素本身會不會對老鼠有影響,所以先用 recombinant hGH (rec-hGH) 做測試,他們打入不同濃度的 rec-hGH (1.2, 3.6, 11mg/ml) 到基轉老鼠腦中,然後在打入後的 240 天後檢測,都未發現有什麼影響,只有在打入高濃度的 rec-hGH (20mg/ml) 後老鼠立刻死亡。

接著便是測試放了三十幾年的 c-hGH 是否能在 AD 基轉老鼠腦中引起 Aβ 堆積。因為剩下的 HWP c-hGH 量並不多,為了有效利用,他們選擇直接打入老鼠的腦部(當初的孩童是由皮下打入),他們同時也加入 rec-hGH 當作控制組,確認生長激素本身並不會引起 Aβ 的堆積,打入的 rec-hGH 劑量比 c-hGH 較多。在這個實驗中,他們有加入另一組控制組,就是把人類腦部檢體、PBS 和 c-hGH 也打入六到八週大的野生鼠(只有老鼠本身的 APP,沒有人類的)。他們在打入後的 240 天後解剖檢視,發現所有野生鼠都沒有 Aβ 堆積的情形,被打入 rec-hGH 的 AD 基轉老鼠腦部也沒有出現 Aβ 堆積和 CAA 的情形,但是呢,被打入 HWP c-hGH 的老鼠腦部有明顯的 Aβ 堆積和 CAA,表示 Aβ 本身是個種子,可以在其他動物體內引起 Aβ 堆積,而且即使過了幾十年都還保有這個特性。

這個結果看起來是滿有力的證據,不過我覺得他們如果有用其他非 HWP 純化的 c-hGH 當做控制組會更有力。另外要注意的是外來的(exogenous) Aβ 並沒有在正常老鼠腦內引起堆積,而是在帶有 APP 突變的基轉老鼠裡,表示要個體本身就有得到 AD 的風險,外來的 Aβ 只是加速疾病的發生和進展。(也許加入表現人類正常 APP 的基轉老鼠當控制組會比較好)



References:

SA Purro et al, Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone. Nature (2018)

Z Jaunmuktane et al, Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature (2015)

VS Ayyar, History of growth hormone therapy. Indian J Endocrinol Meta (2011)









2018年12月29日 星期六

肥胖會降低免疫細胞殺死癌細胞的能力

最近這篇研究,讓人稍微了解了一下肥胖和癌症的關係。這篇研究顯示肥胖會使脂肪會堆積在自然殺手細胞(natural killer cells, NK cells),影響它們的代謝、基因表現和功能,使它們無法正常運作。

自然殺手細胞是一種免疫細胞,除了消滅外來的敵人外,它的其中一個攻擊目標是腫瘤細胞,因此可以限制癌細胞的擴散。自然殺手細胞殺死目標物的方法是分泌一種 lytic granules,這種 granules 裡面有醣蛋白 perforin 和酵素 granzymes (顆粒酶),但是這個對抗機制需要消耗大量的能量,因此它們需要可以生產 ATP 的 glycolysis。

這篇研究發現肥胖會啟動 PPAR (peroxisome proliferator-activated receptor; PPAR),使脂肪堆積在 NK cells,導致它的代謝機制無法運轉,因此無法生產 ATP 去對抗癌細胞。

PPAR 是位於細胞核內的賀爾蒙接受器(nuclear receptor),同時也是轉錄因子(transcription factor),調控各種相關基因的表現,包括有脂肪的運送和代謝、肝醣生產等等,因此大量表現在肝臟和心臟等脂肪代謝率高的器官和脂肪組織裡。PPAR 像是一個脂肪探測器,它的配位基(ligand)包括自由脂肪酸(fatty acid)和其衍生物(derivatives),free fatty acid (FFA) 會啟動 PPAR 和它的 signaling pathway,於是細胞接收到訊息後會開始處理細胞內的脂肪。


Figure: KEGG, Kanehisa Laboratories

在這篇研究裡,老鼠們被餵食高脂肪的食物(high-fat diet, HFD),然後作者們檢視 NK cells 裡有哪些基因的表現量出現改變。沒想到在八週的高脂肪飲食過後,約有三千個基因的表現量和被餵食正常飲食(standard-fat diet, SFD)的老鼠不一樣,有些控制脂肪代謝的基因表現量升高了,主要多是和 PPAR 相關的,而和 cytotoxicity 還有 mTOR 相關的基因表現則下降了,例如受 mTOR 調節的 granzymes。這些變動顯示肥胖會使 NK cells 轉換它的運作,把它禦敵的功能轉換成以代謝脂肪為主。

接著他們比較了肥胖老鼠和瘦老鼠體內 NK cells 的循環狀態,發現肥胖老鼠體內的 NK cells 循環比較慢,而且它們殺死的腫瘤細胞比較少。除此之外,他們也發現肥胖老鼠的 NK cells 裡面有脂肪球堆積,而細胞內用來殺死目標細胞的 perforin granules 卻減少了。他們也用人類的 NK cells 做測試,在培養液中加入 FFA,NK cells 會從培養液中吸收 FFA 進細胞內,他們發現細胞內越多脂肪球堆積的,perforin granules 就越少,有的甚至沒有,而脂肪堆積也讓 NK cells 喪失殺死癌細胞的能力。另外,因為 granzyme 的表現量是受 mTOR 調控的,mTOR pathway 被啟動後會使 NK cells 開始運作 glycolysis 生產能量,所以他們也檢視惹 mTOR pathway 和 NK cells 間的關係。他們發現當 mTOR pathway 被抑制時,NK cells 的殺敵能力大為下降,而在肥胖的情況下,mTOR 是失能的。他們在培養液裡加了脂肪酸後,NK cells 無法啟動 glycolysis 和 OXPHOS,也因此製造出的 ATP 也少很多。在老鼠試驗中,肥胖老鼠的 NK cells 的代謝率和 glycolysis 效率都比正常飲食的老鼠低很多。



以上結果皆顯示,當周遭環境有很多自由脂肪酸的時候(也就是肥胖),NK cells 會把它的禦敵機能(cytotoxicity, mTOR pathway)和生產能量(glycolysis, OXPHOS)的機制轉換到代謝脂肪(lipid metabolism, PPAR pathway),因而導致它的免疫殺敵的功能下降,殺死癌細胞的效能也降低了。

既然如此,那啟動 PPAR 會抑制 mTOR 的功能嗎?作者們在培養液裡加惹 FFA 和 PPARα/δ agonists 去啟動 PPAR,結果從瘦子體內取得的 NK cells 開始吸收脂肪,glycolysis 效率降低,而且 perforin 和 granzyme B 的表現量也大為下降;但是當含有 FFA 的培養液裡加入惹 PPARα/δ antagonists 之後,脂肪便不再堆積在 NK cells 的細胞內,而且也沒有 perforin 表現降低的現象。除此之外,他們也找尋到底是在哪個地方降低惹 NK cells 的御敵能力,他們發現當 PPAR 被脂肪酸啟動或是 mTOR 被抑制的時候,NK cells 可以找到癌細胞,但無法釋出 lytic granules 去消滅癌細胞,而且也會抑制 NK cells 的繁殖。

這篇研究的結果看起來是在 NK cells 裡,用來生產能量對抗癌細胞的 glycolysis 和代謝脂肪的 PPAR 只能擇其一,作者最後有提到說有研究顯示用 rapamycin 去抑制 glycolysis,使癌細胞沒有養份增生,但是這篇研究顯示如果抑制 glycolysis 的話也會使 NK cells 無法生產能量殺死癌細胞,因此使用 rapamycin 可能也不是個好方法。


不負責任結論:最好的方法就是不要過胖讓體內有過多的脂肪去抑制 NK cells 的功能。XD



Article:

TN / ‘Fat-clogged’ Immune Cells Fail to Fight Tumors


Papers:

X Michelet et al, Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature Immunology (2018)

D Fanale et al, The Interplay between Metabolism, PPAR Signaling Pathway, and Cancer. PPAR Research (2017)

M Pawlak et al, Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatology (2015)

LR de Armas & ER Podack, Chapter Sixteen - Natural killer cytolytic activity. Basic Science & Clinical App (2010)









實驗法|研究蛋白質功能

不知道大家在研究某個蛋白質的時候都是從哪方面著手呢?除了它的 subcellular localization 之外,我通常都是從 protein-protein interactions 著手,如果已經知道是和哪個蛋白質 interact,就會看它是用哪個 domain 和其他蛋白質 interact。

最常用(?)的方法大概是把它切成幾個片段,然後用這些片段去做 co-IP,看哪個片段和其他蛋白質 interact。那要如何決定要怎麼切蛋白質呢?通常我是把氨基酸序列丟到 PROSITE 去看它有哪些 functional domain,如果已經有其他人發表關於這個蛋白質的研究的話,可以先看一下其他人怎麼切的,如果還沒有其他人做,那就丟進 PROSITE 去看看。不過呢,PROSITE 能做的就是看它的 secondary structure。

上個禮拜學到另一個方法,就是看蛋白質的 tertiary structure,找出和它類似結構的蛋白質。這個方法可以用在純化某個蛋白質的時候,你找不到關於純化這個蛋白質的論文,丟進 PROSITE 後只顯示出它是屬於某個 superfamily,但是沒有特別的 domain,這時候可以丟進 Phyre2 去找有類似結構的蛋白質,它會找出在 Protein Data Bank (PDB) 裡結構和你要找的蛋白相似的蛋白質,當然不可能是整個蛋白質的結構都和你要的相同,可能只是某個片段,他會告訴你那些片段和你要找的蛋白質的相似度是多少,然後你再自己判斷你要以哪個蛋白質結構為依據來研究你的蛋白質。

不知道這樣解釋夠不夠清楚,目前手邊沒有可以做示範的蛋白質,如果有人有想要研究的蛋白質的話,可以留言一下,我再示範出來。



也歡迎大家分享自己的研究方法唷~ 😄



其他有用的網站:

European Bioinformatics Institute: 我常用的是它的 Clustal Omega
ExPASy Bioinformatics Resources Portal: 我常用的是它的 ProtParam
UniProt: 可以找到蛋白的結構資訊
Protein Secondary Structure: 各種線上資源的連結
NCBI COBALT: multiple alignment for protein sequences
Cold Spring Harbor (CSH) Protocols: 免費的各種 protocols
CSH Recipes: 各種 buffers 的配方
SnapGene Viewer: 用來看 DNA sequences 的軟體,有些 vector map 會有人已經標好各種 primers 或是 tag,不用自己找自己標,很方便。(有付費版本,可以自己剪貼,但我都用免費只有觀看和標示功能的。)這個也可以用來看定序圖哦,也可以手動改 ATCG。