顯示具有 2019-nCoV 標籤的文章。 顯示所有文章
顯示具有 2019-nCoV 標籤的文章。 顯示所有文章

2021年6月25日 星期五

次單位疫苗(高端 & Novavax)和 mRNA 疫苗的差異

之前看到網路上在吵高端和 Moderna 到底一不一樣,基本上以疫苗型態來講,是不一樣的,因為一個是 mRNA,一個是蛋白質。不過,為什麼有人說高端是把 Moderna 的東西搬過來呢?這裡要先瞭解一下生物最基本的 central dogma。生科的應該都學過 central dogma,就是一個基因序列 (DNA) 要先轉成 mRNA (transcription),再轉譯成蛋白質 (translation)。



然後,再來說一下高端和 Moderna 疫苗相同和不同地方:

1. 相同:Spike cDNA sequence(因為一個是 DNA,一個是 mRNA,所以我用 cDNA 來表示他們序列是相同的。)根據高端第一期臨床報告內寫的,他用來表現的 Spike 基因序列是根據 Moderna mRNA 的序列 [1],Moderna 的 Spike mRNA 序列是把兩個氨基酸突變,讓它更穩定 [2],蛋白結構是根據德州大學 Wrapp et al 第一個發表 Spike cryo-EM 的那篇 [3]。不過雖然 Spike 的 cDNA 序列是一樣的,但不能說技術是相同的。



2. 不同:一個是 mRNA 直接打入人體內,一個是把 cDNA 放進 expression vector,然後在動物細胞裡表現 Spike 蛋白之後,把 Spike 蛋白純化出來後,再打進人體。所以,基本上是不同的技術。另外,兩者的佐劑也不同。



那效果會不會一樣呢?很難講,因為有很多變因。

「理論上」抗原(也就是 Spike)應該會是一樣的(不看 post-translational modification,然後也都 folding properly 的話),因為都是在動物細胞裡表現,只是一個是人類細胞,一個是倉鼠細胞(CHO cells),不過雖然在細胞裡表現出來是一樣的,但純化的過程中有可能會改變蛋白質的 conformation。另外的變因就是疫苗的佐劑,不同的佐劑引起的免疫反應也會不同,然後就是 mRNA 和蛋白質引起的免疫反應也會有差,所以就算是從相同的 DNA 序列做出來的不同種的疫苗,效果也不見得會相同。

另外,最近 Novavax 的三期臨床結果出來了,效果非常的好,讓有些人認為同是次單位疫苗的高端會不會效果也這麼好。我個人是覺得 Novavax 的效果會這麼好,是因為它的佐劑會讓 Spike protein 黏在一起變得像 virus-like particle (VLP),整體結構更像病毒,高端是不是這樣就不知道了。





References:

[1] S Hsieh et al, First-in-Human Trial of a Recombinant Stabilized Prefusion SARS-CoV-2 Spike Protein Vaccine with Adjuvant of Aluminum Hydroxide and CpG 1018. medRxiv (2021)

高端的 phase I 報告裡寫它用的設計是依據這個:"S-2P protein is a recombinant version of the S protein developed by the laboratory of Dr. Barney S. Graham (Vaccine Research Center, National Institute of Allergy and Infectious Diseases[NIAID], U.S.A.), and is a stabilized prefusion S ectodomain, encoding residues 1-1208 of SARS-CoV-2 spike protein with two proline substitutions at residues 986 and 987, a “GSAS” substitution at residues 682–685 to abolish the furin cleavage site, and a T4 fibritin trimerization motif at the C-terminus."

[2] KS Corbett et al, SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature (2020)

Moderna mRNA publication: "Within 24 h of the release of genomic sequences of SARS-CoV-2 isolates on 10 January 2020, the 2P mutations were substituted into S protein residues 986 and 987 to produce prefusion-stabilized SARS-CoV-2 S(2P) protein for structural analysis and serological assay development in silico, without additional experimental validation. Within 5 days of the release of the sequence, current good manufacturing practice (cGMP) production of mRNA–LNP encoding the SARS-CoV-2 S(2P) as a transmembrane-anchored protein with the native furin cleavage site (mRNA-1273) was initiated in parallel with preclinical evaluation."

[3] Wrapp et al, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (2020)

相關文章:近期和新冠病毒抗體相關的研究










2021年6月5日 星期六

CH 上關於新冠疫苗的討論 20210604

這篇只是簡單記錄一下昨天在 ClubHouse 上聽到的討論,前半段是討論 Nature Medicine 那篇論文 [1],應該很多人都看過了,就不在這篇裡敘述(除非哪天心血來潮想寫一下)。



1.
台灣的 CDMO:台康、永昕產能 2000 L,之前有接洽過 AZ 看能不能代工,但似乎因為量產達不到而不了了之。要擴大量產需要大量資金,需要政府幫忙,like Samsung Biologics。

韓國的 CDMO:1,5000L bioreactor x 8~10

2.
瑞士的疫苗施打率很低,因為買不到,於是和 Moderna 合作,由瑞士公司 Lonza 生產以供內需,徵召碩博士生去做疫苗,月薪七千瑞士法郎,為期三到六個月。

3.
有人問:聯亞有二期三期合併,高端感覺還要很久,為什麼現在都在討論高端,沒有在討論聯亞?

答:因為高端有股票上市吧哈哈 XD

4.
台灣的二期要多少人?當初有人在討論要一千人還是三千人,講一千人想的是還是要三期,擴大到三千人想的是二期過了就直接 EUA。三千人的來源是 FDA 的 safety guideline,TFDA 先設了這個 criteria 後高端和聯亞才把臨床設計做成第二期三千人。

5.
高端計畫在巴拉圭做 1:7 的三期臨床試驗。台灣的二期沒有真的雙盲,三期才有雙盲。二期預計六月解盲,但沒什麼好解盲的,一定是成功的,有抗體就是打疫苗,沒抗體就是打食鹽水,二期只看一點點 efficacy 沒那麼重要,三期看 efficacy 比較重要。

6.
台灣和後來才出來的新冠疫苗會越來越沒有做傳統三期的條件,因此 WHO 前兩天才開會討論 Nature Medicine 那篇 paper [1],看能不能做 immunobridging,用中和抗體效價取代傳統三期。

7.
台灣好像有兩家公司做 mRNA,但是技術不夠。

8.
mRNA & adenoviral vaccine CQA (critical quality attribute) 應該沒有 biological potency assays,mRNA 所知的 guideline 是看 purity, identity, in vitro expression (WB)。Adenovirus 的話可能是 strain identity, TCID50 assay, qPCR,但是病毒的 batch-to-batch variability 很高,包括用於 gene therapy 的 AAV,不知道各廠是如何確定每個 batch 的品質是一致的。

9.
關於 Nature Medicine 那篇有些 limitations,例如每個疫苗檢測的方法都不一樣、不知道康復者的抗體是感染幾天後的,要怎麼知道康復者體內的哪幾株中和抗體(neutralizaing antibodies)是有保護力的等等。

註:那篇裡面分析的疫苗有 Moderna (mRNA-1273), Novavax (NVX-CoV2373), BioNtech/Pfizer (BNT162b2), Sputnik V (rAd26-S+rAd5-S), Oxfored/AZ (ChAdOx1 nCoV-19), J&J Janssen (Ad26.COV2.S) 和中國的科興疫苗 CoronaVac (inactivated),中和抗體的分析結果和 Phase III 的差不多,兩支 mRNA 的表現最好,中和抗體也最多,科興的最差,中和抗體也最少。

相關文章:又一篇新冠病毒的小抗體研究

如果真的要做 immunobridging,要用哪些抗體當作 markers 或 reference,每隻疫苗產生的抗體都不太一樣,要怎麼確定有產生那幾株抗體就表示有保護力?如果某個疫苗沒產生那些抗體,就代表沒保護力嗎?之前有研究顯示,不只抗體有保護力,感染後產生的 T cells 也有保護力,這些要包括在內嗎?

相關文章:新冠病毒感染者體內 T 細胞的免疫反應

Moderna 在青少年的臨床試驗上,便是看免疫反應 [2, 3],但那是因為是同一隻抗體,檢測的方法也是一致的。

10.
Regeneron mAb cocktail 只有兩株抗體 [4],是從老鼠體內釣出來後再 humanized。



References:

1. DS Khoury et al, Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine (2021)

2. Moderna Press Release / Moderna Announces TeenCOVE Study of its COVID-19 Vaccine in Adolescents Meets Primary Endpoint and Plans to Submit Data to Regulators in Early June (May 2021)

3. UMass Med News / Moderna’s TeenCOVE study of COVID-19 vaccine, with UMMS participants, meets primary endpoints (May 2021)

4. FDA / Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19 (Nov 2020)










2020年8月8日 星期六

抗新冠病毒的 T cells 和抗感冒冠狀病毒的有 cross-reactivity

另外兩篇關於 T cells 對新冠病毒反應的研究,一篇是分析健康個體和新冠患者的 T cells,一篇是分析未感染者體內對新冠病毒有反應的 T cells,看看他們和普通感冒的冠狀病毒是否有 cross-reactivity。

刊在 Science 的那篇之前已經有一篇發表在 Cell,同樣是分析健康個體和 COVID-19 康復患者的血清,然後發現所有康復患者都有可辨識新冠病毒 Spike protein 的 CD4+ (helper) T cells,T cells 的反應程度和 IgG 量成正向相關,然後七成的康復患者有可對抗新冠病毒的 CD8+ (killer) T cells,而且反應強烈。康復患者除了帶有可辨識 Spike protein 的免疫細胞外,他們也帶有可辨識其他病毒蛋白的 T cells,像是 M protein 和 N protein。

相關文章:新冠病毒感染者體內 T 細胞的免疫反應

在之前的研究裡,他們同樣也分析了疫情前採集到的血清,同樣帶有可辨識新冠病毒的 T cells。

「他們檢測了於 2015-2018 年採樣到、沒有感染過新冠病毒的血液檢體,結果發現其中有 40% - 60% 含有可以辨識新冠病毒的 helper T cells,不過和康復患者不同的是他們的 T cells 反應雖然也是以 Spike 為主,但幾乎沒有對 N protein 或 M protein 有反應的 T cells,次主要的是 NSPs (non-structural proteins)。而之所以會有這些 T cells,可能是因為這些人之前感染過其他種類的冠狀病毒,cross-reactivity 使他們體內也有能辨識新冠病毒的 T cells。研究者們認為這是之前感染其他四種引起感冒症狀的冠狀病毒時產生的,因為這些血液檢體裡都有針對至少其中三種常見冠狀病毒的 T cells,血清檢測也顯示全部都有 HCoV-OC43 和 HCoV-NL43 Spike protein 的 IgG 抗體,表示大多數人都感染過常見的四種感冒冠狀病毒,而且至少感染過超過三種,而這也可能是為什麼大部分的人感染到新冠病毒後都只是輕症或無症狀。」

註:常見的四種感冒冠狀病毒為 NL63, 229E, OC43 和 HKU1。

這和後來瑞典,以及 Duke-NUS 的研究結果相似,未感染者的體內有可辨識 Spike 和 NSPs 的 T cells,但是極少有可辨識 N protein 的。那這些對新冠病毒有反應的 T cells 是哪裡來的呢?是因為感染過感冒冠狀病毒而得來的嗎?如果是的話,表示抗普通冠狀病毒的 T cells 和抗新冠病毒的 T cells 是有 cross-reactivity 的。他們後來發表在 Science 的這篇研究,就是分析未感染者體內的 T cells 可辨識的新冠病毒蛋白有哪些,另一篇德國研究團隊發表在 Nuture 也做了類似的分析。(德國的這篇之前已先發表在 medRxiv)

相關文章:輕症及無症狀患者帶有可對抗新冠病毒的 T cells

他們用 2018 年採樣到的血清去掃新冠病毒的蛋白片段,看對哪些片段有反應,大部分對病毒蛋白有反應的為 CD4+ T cells,少數為 CD8 T cells,和之前的研究結果一致。用來測試 T cells 反應的病毒片段分為兩組,一組是 Spike 的片段,一組是非 Spike 的片段,能被 T cells 辨識的片段大約是個一半。T cells 有反應的 Spike 那一半只有 11% 的目標是 RBD,而非 Spike 的那一半則大多是 NSPs,並且沒有對 M proteins 有反應的。相較之下,COVID-19 患者的 CD4+ T cells 則是對 M proteins 有強烈反應。

ok, 那這些疫情開始前一年的血清到底是為什麼有抗新冠病毒蛋白的 T cells?到底是不是因為和其他普通的感冒冠狀病毒有 cross-reactivity?他們發現這些血清裡的 T cells 都對常見的感冒冠狀病毒有反應,包括了 NL63, OC42 和 HKU1。另外,有 57% 的 cross-reactivity 在於那些蛋白片段有 >67% 的相似度。

相關文章:未感染過新冠病毒或 SARS 的人也有對抗新冠病毒的 T cells

下面這個 podcast 是對這篇研究的討論:Immune 34 - Coronavirus cross-reacting T cells



如果對免疫細胞實驗不了解的,podcast 裡解釋滿清楚的,下面幾點是我筆記到的:

1. 未見識過新冠病毒的 naive T cells 被新冠病毒的蛋白片段刺激後(1st boost),會轉變成 memory T cells,memory T cells 如果再度接受刺激(2nd boost),則會快速繁殖(proliferation),因此如果未感染者血清內的免疫細胞接受新冠病毒的蛋白片段刺激後便快速繁殖,表示他們體內已有可辨識新冠病毒的 T cells。

2. MHCI 和 MHCII 辨識的 peptide 長度不一樣,MHCI 主要表現在 CD8+ T cells,能夠抓到 peptide 長度是 8-10 個氨基酸;MHCII 表現在 CD4+ T cells,辨識的則是 13-18 個氨基酸長,因為他們用的 peptide 長度是 14-15 個氨基酸長,所以抓到的主要是 CD4+ T cells,這並不表示未感染者體內沒有 anti-Spike CD8+ T cells,而是這個實驗設計本身就是以釣出 CD4+ T cells 為主。

3. 因為人體內的 CD4+ T cells 有兩種:未見識過新冠病毒的 naive T cells 和見識過新冠病毒的 memory T cells,如果這些 2018 年採集的、未感染過新冠病毒的血清內有可辨識新冠病毒的 T cells 是因為和其他冠狀病毒的 cross-reactivity 而產生的,則需要確定它們是 memory T cells,怎麼確定?Naive T cells 和 memory T cells 表面的 markers 不一樣,所以可以用來辨識是哪種。

德國的那個則是比較了 COVID-19 患者的血清和健康個體的 T cells 對新冠病毒的反應,83% 的患者對 Spike 有反應,35% 的健康個體對 Spike 有反應(健康個體的 PCR 和血清檢驗為陰性)。雖然 COVID-19 患者和健康個體的 T cells 都可以辨識 Spike,但是有些差別。COVID-19 的 T cells 對 Spike S1 和 S2 domain 的反應程度差不多,但健康患者對 C-terminal 的 S2 反應比較強烈,而這個部分和其他常見的感冒冠狀病毒相似度很高,於是他們測了健康個體血清裡的抗體,發現所有健康個體都帶有常見的冠狀病毒,而且是四個全帶。這也可能是為什麼小朋友不易感染新冠病毒,因為學校不時有感冒冠狀病毒傳來傳去,大部分的小朋友應該都有抗冠狀病毒的免疫細胞惹。XD

相關文章:感染過冠狀病毒是否就免疫了呢?

「當時參與研究的志願者中,只有 11% 體內沒有抗體,顯示在當時的年代(1961-1977),這株冠狀病毒非常普及。當一年後再讓這些志願者感染這株病毒,看看抗體是否還有保護作用,發現抗體對同株的病毒有保護作用,但對相近病毒(也就是同樣是 alphacoronavirus,但是不同病毒株)只有部分的保護作用。後來有篇研究(Callow et al, 1990)顯示,如果體內抗體量不夠的話,229E 的康復患者可被二次感染。參與此研究的志願者在感染病毒一週後,IgG 開始上升,然後在十四天時達到高峰,一年後再測的時候抗體量仍然比感染前高,當再一次接受感染挑戰的時候,雖然約有一半的人被二次感染,但都沒有症狀。另外,第一次感染的時候,在前五到六天都測得到病毒,而二次感染時,只有前兩天測得到病毒,顯示病毒被清掉的很快。」



所以,到目前大概知道了什麼?

1. 未感染的健康個體雖然沒有抗新冠病毒的抗體,但是有可辨識新冠病毒的 T cells。COVID-19 患者的 T cells 幾乎對所有新冠病毒的蛋白都有反應,包括 Spike, M & N proteins,以及 NSPs,但未感染者則是以 Spike 和 NSPs 為主,對 N 沒什麼反應。

2. 有的原因很可能是因為感染過常見的感冒冠狀病毒,體內已有抗冠狀病毒的 T cells,由於有 cross-reactivity,因此這些 T cells 也可以辨識新冠病毒。

3. Cross-reactivity 的部分目前知道的可能有 Spike S2 和一些 NSPs,homology 可能要高於 67%,cross-reactivity 才會比較高。


未感染者體內雖然有可辨識新冠病毒的 CD4+ T cells,但並不表示它們有保護作用,因為他們是 helper T cells,並沒有消滅病毒或感染細胞的實質功能,所以我還滿想知道未感染者體內是否有 CD8+ T cells。



原論文:

J Mateus et al, Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science (2020)

J Braun et al, SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature (2020)










不需用細胞和病毒的中和抗體檢測

快速抗體檢測,這是之前新加坡大學和 Duke University 合作的那個,他們測的是體內的中和抗體(neutralizing antibodies),就是可以和病毒結合,使它不能感染細胞,有抑制病毒作用的抗體。

要測體內是否有中和抗體,需要做抗體中和檢測(virus neutralization test, VNT),簡單來說就是把抗體和病毒先混在一起 incubate,一個小時後再把抗體和病毒的混合物來拿來感染細胞,看看感染率有多少。中和抗體越多,可以抑制的病毒也就愈多,感染的細胞也就越少。通常這種檢測用的是原本的、活的病毒,所以要測新冠病毒的中和抗體的話,用的就是新冠病毒,不過如果要用新冠病毒,就需要 BSL3 的實驗室。在這篇論文裡,他們用的方法是 surrogate VNT (sVNT),不需要用活的病毒,也不需要細胞,所以在 BSL2 實驗室就可以做,而且論文說他們在新加坡(n=175)和中國(n=50)的患者群身上測試結果,99.93% specificity (準確度) & 95-100% sensitivity (敏感度)。



相關文章:新冠病毒(SARS-CoV-2)的檢測 -- qPCR 和抗體

不用病毒,也不用細胞,要怎麼測試呢?因為我們已經知道新冠病毒感染是透過它的 spike protein RBD (receptor-binding domain) 和人類細胞表面的接受器 ACE2 結合而進入細胞的,所以他們認為只要在 ELISA plate 上測試就可以了,看了論文裡的圖示,其實就是普通的 ELISA,把 ACE2 coat 在 ELISA 上面,當作是細胞表面,然後把患者血清和 RBD 混合,RBD 已經是 HRP-conjugate,之後再把混合後的 Ab/RBD-HRP 加到 ACE2-coated ELISA plate,最後測訊號看看有多少 RBD 和 ACE2 結合,訊號越低的就表示血清裡中和抗體的含量越高。

他們還和兔子、老鼠、駱馬和人類的其他十五個 mAb 做比較,看看他們的 sVNP 是否能分別出普通抗體和有中和作用的抗體,結果顯示那些 mAb 在他們的 sVNP 檢測裡只有微弱的中和病毒的效用,有的甚至沒有,表示 sVNP 測到的是中和抗體的含量,而不是所有抗新冠病毒的抗體 [註]。

註:並不是所有抗新冠病毒的抗體都是中和抗體,有抑制病毒的效用,之前有研究顯示只有 anti-Spike S1 和 anti-Spike RBD 的抗體有抑制病毒的效用。

相關文章:近期和新冠病毒抗體相關的研究

除此之外,論文裡說他們的 sVNT 測的是所有中和病毒的 isotypes,也就是包括 IgG 和 IgM,不像其他大多數的抗體檢測,只有測 IgG 或 IgM。他們用了不同濃度的 IgM 和 IgG 抗體去測,都可以測到中和抗體,即便 IgG 和 IgM 量都很低,也可以測出中和抗體 70-90% 的抑制功效,表示他們的 sVNT 的敏感度很高。另外,他們也試了不同動物的中和抗體和普通抗體,也就是把 RBD 或整顆病毒打入動物體內,被打入 RBD 的動物體內產生的抗體便都會是有抑制效用的中和抗體,打入整顆病毒的可能只有部分是中和抗體,結果顯示皆可測到中和抗體,不過被打入 RBD 的動物血清抑制病毒的效力比較高。

最後,就是測試準確度了,看看 sVNT 是否可分別出 SARS, 新冠病毒和其他的冠狀病毒。實驗結果顯示感冒冠狀病毒(229E, NL63 or OC43)患者的血清裡並沒有測到可抑制新冠病毒的抗體,而 SARS 康復患者的血清內則有一點點,顯示有一點 cross-reactivity。不過當把 SARS sVNT 和 SARS-CoV-2 sVNT 放在一起比較的話,是可以看出分別的,SARS 康復患者的血清對 SARS RBD 的抑制效果比 SARS-CoV-2 要好。

雖然他們在 sVNT 裡 SARS 患者的血清和新冠病毒是有 cross-reactivity,但其他研究團隊用病毒和細胞系統的中和檢測(conventional VNT, cVNT)中是沒有的,所以這表示 sVNT 的敏感度比較高嗎?我覺得有意思的是 SARS 康復患者的血清裡仍測得到中和抗體,大家都知道 SARS 已經過去十七年了,這表示感染過 SARS 後,體內的抗體能維持十七年,而不是之前認為的只有三年嗎?他們有跟 2003 年時,感染不到一年後採的血清相比,十七年後血清內的中和抗體量是比感染不到一年時低,但也沒有說低很多。

他們也和普通的 cVNT 做比較,看結果是否一樣,sVNT 的結果是否可以轉譯成 cVNT,看起來結果是一樣的,表示 sVNT 應該可以取代 cVNT。剛需要花上兩三天的 cVNT 相比,sVNT 花的時間是要短得多,一天內可以搞定,不過論文中說只要一、兩個小時也 .... incubation 就兩個小時惹,再加處理血清和做 ELISA 本身的時間,總共也要花個三、四個小時吧,雖然他們用 RBD-HRP 就可以少一個小時的 incubation time, but still.... 不過它的好處是普通實驗室就可以做惹。



原論文:

CW Tan et al, A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nature Biotech (2020)












2020年8月1日 星期六

未感染過新冠病毒或 SARS 的人也有對抗新冠病毒的 T cells

體內對抗病毒或細菌的免疫系統除了抗體外,還有免疫細胞們。之前說過,免疫系統有兩種,一種是第一線的先天免疫系統(innate immunity),另一種是感染後學習得來的 adaptive immunity。簡單來說,第一線的先天免疫系統裡,負責打仗的是白血球,包括巨噬細胞(macrophage)和自然殺手細胞(natural killer cells, NK cells)等等。負責第二線 adaptive immunity 則是消滅被感染細胞的 T cells 和生產抗體的 B cells。通常感染後的 B cells 反應程度和 T cells 反應程度是相關的,有一個就有另一個,之前較多研究是著重在感染新冠病毒後,體內是否產生可以對抗的中和抗體(neutralizing antibodies),不過最近有幾篇研究是關於 T cells 免疫反應的,有趣的發現是有的人體內測不到抗新冠病毒的抗體,但卻有抗新冠病毒的 T cells,尤其是 CD4+ (helper) T cells。

相關文章:輕症及無症狀患者帶有可對抗新冠病毒的 T cells

人類冠狀病毒有七個,除了這次的 SARS-CoV-2 和之前的 SARS, MERS,另外就是造成感冒的 OC43, HKU1, 229E 和 NL63,這些全部都會引起 T cells 反應和產生抗體,不過抗體消退的比 T cells 反應快,SARS 患者的抗體大概可維持兩、三年,不過他們的 memory T cells 在感染後至今已有十七年了仍存在於體內。之前有研究顯示抗冠狀病毒的抗體有 cross-reactivity,除了抗 spike RBD (receptor-binding domain) 的抗體比較有 specificity,由於其他蛋白在冠狀病毒中還滿 conserved,抗這些蛋白的抗體很多都有 cross-reactivity,也就是說抗其他冠狀病毒的抗體也可以辨識新冠病毒的抗體。抗體是這樣,T cells 也是這樣嗎?

前幾天發表在 Nature 的一篇研究分析了三組人的 T cells,包括有 SARS 康復患者、新冠病毒的康復患者,以及沒有感染過 SARS 和 SARS-CoV-2 或接觸過患者的個體,想知道他們體內是否有對抗新冠病毒的 T cells ,還有對病毒的哪些部分有反應,例如結構蛋白(structural protein) nucleocapsid (NP) 和非結構蛋白(non-structural proteins) NSP7 等等 [註]。

註:病毒蛋白分為兩種:structural proteins 和 non-structural (NS) proteins。Structural proteins 就是組成病毒的蛋白,例如 capsid proteins 或是 envelope proteins。NS proteins 大多是酶類蛋白,功能為調控病毒蛋白的表現居多,這篇論文裡測的 NSP7 和 NSP13 在冠狀病毒的小族群裡變化不多,SARS 和 SARS-CoV-2 的 NSP7 和 NSP13 幾乎一樣,這種通常會有 cross-reactivity。

1. 新冠病毒患者, n = 36

所有康復患者的免疫細胞(PBMC, peripheral blood mononuclear cells)對 NP 有反應,但是只有 33% 的人對 NSP7 和 NSP13 有反應。有的人的 T cells 可以對 NP 的很多片段有反應,有些 NP 片段除了可被新冠病毒患者的 T cells 辨識外,同時也可以被 SARS 康復患者的 T cells 所辨識。對病毒 NP 片段有反應的以 CD4 T cells 為主。

相關文章:新冠病毒感染者體內 T 細胞的免疫反應

2. SARS 康復患者, n = 23

SARS 已經過去十七年了,康復患者的免疫系統仍然可以對抗 SARS 嗎?這篇研究顯示,SARS 康復患者體內仍存有可以辨識 SARS NP 的免疫細胞,而且也可以辨識新冠病毒的 NP,不過對其 NSP7 和 NSP13 沒什麼反應。這是否說,新冠病毒感染患者的免疫細胞維持的時間和 SARS 康復患者的免疫細胞一樣,可以維持長達十多年後仍對病毒有反應?

3. 沒有 SARS 或新冠病毒病史和接觸史, n = 37

其中二十幾位的血液是 2019 年七月以前採樣的,十一位是抗體測試對新冠病毒的 NP 反應為陰性。分析結果顯示一半以上未感染者的 T cells 可以辨識新冠病毒的蛋白片段,不過它們辨識的片段大多和康復患者體內的 T cells 辨識的病毒片段不同,主要以 NSP7, NSP13 和 NP 為主。NSP7 和 NSP13 雖然在 SARS 和 SARS-CoV-2 間的相似度高,但是和感冒冠狀病毒 OC43, HKU1, NL63 和 229E 的相似度滿低的,那這些未感染過 SARS-CoV-1/2 個體體內的 T cells 不是因為感染過感冒冠狀病毒後習得來的,那是從哪裡得來的呢?是其他未被發現的冠狀病毒嘛?

這篇研究中也提到,雖然體內有可對抗新冠病毒的 T cells,不代表可以使個體免於感染,不過可以在感染之後就消滅它,至少不會使它演變成重症。



相關文章:新冠病毒的哪個部分最能引起免疫反應呢?

從這篇研究我們知道了什麼?

1. COVID-19 康復患者體內有可以辨識 SARS-CoV-2 的免疫細胞,而且有 cross-reactivity,也可以辨識 SARS 的病毒蛋白。

2. SARS 康復患者體內的免疫細胞可以維持十七年後仍對 SARS 蛋白有反應,並且也有 cross-reactivity,同樣對新冠病毒有反應。

3. 未感染過 SARS-CoV-1/2 或未接觸過患者的個體體內也有可以辨識新冠病毒蛋白的免疫細胞,不過辨識的蛋白和 SARS-CoV-1/2 的康復患者不同,以 NSP7 和 NSP13 為主,不像 SARS-CoV-1/2 康復患者的免疫細胞,主要辨識的是 NP。

4. 目前還不知道為什麼未感染者的體內會有可以辨識 SARS-CoV-2 蛋白的免疫細胞,只知道不是因為感染過感冒冠狀病毒後產生的。



Articles:
TN / “Common Cold” Coronaviruses Could Help Produce Anti-SARS-CoV-2 Immune Cells (July 2020)


Papers:
DM Altmann & RJ Boyton, SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Science (2020)

NL Bert et al, SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature (2020)










2020年7月3日 星期五

輕症及無症狀患者帶有可對抗新冠病毒的 T cells

免疫系統除了較為人知的白血球,例如巨噬細胞(macrophae)等等,還有抗體外,另外就是 T 細胞和製造抗體的 B 細胞。最近有幾篇研究是關於感染新冠病毒後,體內的 T 細胞反應,發現康復患者體內除了有抗 Spike protein 的抗體外,同時也都有能夠辨識新冠病毒的 CD4+ (helper) T cells,並且有強烈反應。也有研究顯示,未感染過新冠病毒的患者的血液檢體裡,也含有可辨識新冠病毒的 helper T cells。

相關文章:新冠病毒感染者體內 T 細胞的免疫反應

至於輕症或無症狀患者呢?輕症或無症狀患者的體內不見得測得到抗體,不過最近瑞典的 Karolinska Institute 的研究團隊發現,輕症及無症狀患者體內有對抗新冠病毒的 T cells,即便他們體內沒有產生足夠、可被檢測到的抗體量。

這篇研究先比較了重症患者、康復後的輕症或無症狀患者,還有健康個體的血液,發現其 CD4+ T cells 裡的 CD38 和 PD-1,以及 CD8+ T cells 裡的 CD38 和 CTLA-4 等等的表現有明顯的區別,重症患者的 CD38 和 PD-1 表現比健康個體要高。普遍來說,患者早期的 CD8+ T cells 會有 CD38 和 PD-1 表現增加的現象,而康復患者則是偏向 CCR7+ 的表現增加。他們利用這些差別,分析了今年五月中院內的五個不同族群、兩百位多位個體的 memory T cells,包括在疫情發生前或發生中的健康個體、輕重症和無症狀的康復患者,和康復患者一起住的家庭成員。

跟之前的研究一樣,疫情爆發前的健康個體血液裡有可辨識新冠病毒 membrane protein 和 spike protein 的 T cells,但是對 nucleocapsid 沒有反應,而康復患者則對這三個病毒蛋白都有反應。令人覺訝異的是輕症和無症狀患者,以及在疫情期間捐血的健康個體的血液裡,皆有對這三個病毒蛋白都有反應的 T cells。另外,CD4+ T cells 的反應比 CD8+ T cells 強烈。最後,他們比較了這五個族群體內抗體和 T cells 的關係,發現有些人的抗體檢驗為陰性,但是卻帶有對抗 nucleocapsid, membrane protein 和 spike protein 的 CD4+ 和 CD8+ T cells。帶有對新冠病毒有強烈 T cell responses 的人口中,除了患者家屬、輕症及無症狀患者外,還有在疫情期間的健康患者,帶有抗病毒 T cells 的人數是帶有抗體人數的兩倍之多,表示即便用血清檢測也低估了感染人數。

有些學者擔心,輕症或無症狀患者體內的免疫反應不足以產生保護效應,因為抗體量不高,不過這個研究顯示,雖然抗體不高,但是對抗病毒的 T cells,表示已有可以對抗病毒的免疫機制。在之前 SARS 疫苗的研發中,發現疫苗雖然沒在老鼠體內產生足夠抗體,但卻可以引起 T cell responses,並且足以使老鼠免於不被 SARS 再次感染而死亡,這個現象同樣也在這個研究裡的輕症和無症狀康復患者中觀察到。也有其他研究觀察到,未感染者帶有可辨識新冠病毒的 T cells,可能是因為和其他冠狀病毒有些許的 cross-reactivity 造成的,如果是這樣的話,是不是血清低估感染人數似乎也不能確定。



相關文章:

未感染過新冠病毒或 SARS 的人也有對抗新冠病毒的 T cells
抗新冠病毒的 T cells 和抗感冒冠狀病毒的有 cross-reactivity


Articles:

TN / SARS-CoV-2 Immunity Likely To Be Higher Than Antibody Testing Has Shown (July 2020)

Karolinska Instututet / Immunity to COVID-19 is probably higher than tests have shown (June 2020)


Paper:

T Sekine e tal, Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. bioRxiv (2020)

T Sekine e tal, Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell (2020)











2020年6月27日 星期六

新冠肺炎患者體內的抗體有哪些

這篇研究分析了六十幾位 COVID-19 患者體內的抗體,想知道他們在感染後的產生時間和其 neutralizing 的功效。

摘要:

1. 用 ELISA 實驗的結果,發現用 Spike RBD (receptor-binding domain) 來測試患者體內抗體的 specificity 和 sensitivity 比較高。

2. 幾乎沒有患者在症狀出現後八天內有測到中和抗體(neutralizing antibodies),然後在第 21 天時有 91% 的患者測得到低量的 neutralizing antibodies,只有 73% 的患者體內有保護作用的中和抗體含量高於 1:80。

3. 大約有 32% 在症狀出現 21 天後,體內中和抗體的量依然很低,有的甚至沒有。

4. 大部分的人在出現症狀七天後,體內才測到較高的 IgG 和 IgM 抗體。

5. 症狀出現九天後,體內 IgG 抗體較為普遍,大多數感染過的人都有 IgG 抗體(94%),七成的患者有 IgM。

6. FDA 建議用血清來治療的 titre 是 1:160,目前只收症狀持續兩個禮拜的康復患者捐獻的血液用於治療。

7. RBD-binding 的抗體量和保護作用(neutralizing)呈現正相關:體內 anti-RBD 的抗體越多,保護作用越大。

8. 患者體內 IgM 的量也和體內的中和抗體(neutralizing antibodies)的量呈現正相關。

註:中和抗體為可結合病毒,進而抑制其感染細胞的抗體。

新冠病毒的哪個部分最能引起免疫反應呢?

知道這個有什麼用呢?可以用來做疫苗研發,如果我們知道病毒的哪個蛋白或蛋白的哪個片段可以引起有效的免疫反應,那就可以用來作為疫苗,比起打入整顆的病毒,只打入病毒的某個蛋白或某個蛋白片段會相對安全,有人想研發 DNA- 或 RNA-based 疫苗的部分原因也在此,因為它們只會在體內表現病毒的蛋白或蛋白片段,而不是整個病毒。

這個研究主要是用 Spike protein,他們把 Spike protein 依照目前所知的 domains 分成幾個片段試驗。

1. S-ectodomain (S1+S2), aa 16-1213
2. S1, aa 16-685
3. RBD, aa 319-541
4. S2, aa 686-1213

相關文章:近期和新冠病毒抗體相關的研究

他們把這些蛋白片段打入兔子體內,第一次和第一次施打隔了兩個禮拜,然後在打入後第八天取血清分析,看看哪個可以引起強烈的免疫反應。他們用 ELISA 測試血清裡的 IgG 和四種抗原的反應,結果顯示所有的血清都有可和 S-ecto 產生強烈反應的 IgG,而和其他三個抗原的反應則滿 specific,打入 S2 兔子的血清只對 S2 產生反應,對 S1 和 RBD 則沒反應。

因為 ELISA 分析的是 IgG binding,他們另外也用 SPR 分析其他 Ig binding,結果顯示在二次施打後,所有取得的血清裡,anti-Spike 的抗體中有 80% 是 IgG,10-15% 是 IgA,以及少量的 IgM。專一性的話呢, S-ecto 兔子的血清裡,大多數抗體都和 S-ecto 結合,再來是和 S1,最後是 RBD 和 S2,大概是 S-ecto 的三分之一。S1 兔子血清裡和 S-ecto, S1 以及 RBD 結合的抗體都差不多多,沒有和 S2 結合的。RBD 兔子血清裡的抗體一樣是和 S-ecto, S1 以及 RBD 結合的量都差不多,但是量都是 S1 兔子的三倍,而且這些抗體對抗原的 affinity 是其他兔子抗體的五倍。

再來就是看這些抗體的保護力了,他們用 RBD-hACE2 binding competition SPR assay 和 neutralization 測試抗體抑制病毒的功效。因為新冠病毒進入細胞靠的是 RBD 和宿主細胞 hACE2 的結合,competition SPR assay 便是測試抗體阻斷 RBD 和 hACE2 的功效如何,結果顯示 S1 兔子和 RBD 兔子的血清阻斷的效能最好,分別為 84% 和 94%,而 S1+S2 的只有 44%。那這些抗體是否可以阻止細胞被病毒感染呢?實驗結果顯示 RBD 兔子的血清抑制病毒感染的效果最好,再來是 S1 兔子的血清,最後才是 S1+S2 兔子的血清。

結論:用病毒 Spike protein RBD 產生出來的抗體對抗原的 affinity 最高,最能有效阻斷 RBD-hACEII binding,抑制病毒感染細胞的效果也最好。



Publication:

S Ravichandran et al, Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Science Translational Medicine (2020)










2020年5月15日 星期五

從駱馬體內得到的新冠病毒小抗體

哎呀呀,已經有人做了啊。這篇的研究團隊是之前做 Spike protein Cyro-EM 的那個,原來他們也有做駱馬(llama)的小抗體研究啊。

相關文章:關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊

如果有看過我之前關於小抗體那篇的,就知道駱馬和鯊魚除了有普通的 IgG 之外,還有一種只有 heavy chain 的小抗體 HCAbs (heavy chain antibodies),如果只取它的 Fv (variable region),體積會更小,稱為 VHH 或是 nanobodies (Nbs)。這種小抗體要顧慮的地方比傳統 IgG 要少一些,例如不用考慮是否醣化(glycosylation),加上也較容易生產製造,所以近來也引起關注,可望作為另一種型態的抗體藥。

相關文章:關於抗體和抗體藥的一些小知識

根據文中所述,他們自 2016 年起就用駱馬研發對抗 SARS 和 MARS 的小抗體。駱馬被先後打入 SARS 和 MERS 的 Spike protein 後體內會產上對抗 Spike protein 的抗體,他們在打入抗原的六週後取出駱馬的淋巴球,然後再用噬菌體展示(phage display)從中釣出可以和 Spike protein 結合的小抗體。他們從從駱馬淋巴球裡抓到七個 MERS 的小抗體和五個 SARS 的小抗體,得到了小抗體的基因序列後,便在酵母菌裡大量表現,然在再用 ELISA 確認它是否真的能夠和病毒結合。經過試驗發現其中一個 VHH 可以中和 SARS,為 VHH-72,並且和 MERS 的 S protein 沒有 cross-reactivity。

註 1:抗原(antigen)對免疫系統來講就是外來物,因此可以是病毒或細菌,免疫系統在外來物入侵後即會產生抗體(antibody)對抗外來物。

註 2:一隻駱馬可以被打入五種抗原,之後在用 phage display 把分別的小抗體釣出來,想更瞭解細節的可參考之前的《 Phage display 和小抗體製造 》這篇。

接著,他們想測試這些 VHH 是否可以抑制病毒,於是他們改造了基改過無害的 lentivirus VSV,讓它們在表面表現 S protein,假裝是 SARS,然後看看這些假 SARS 病毒是否能夠進入細胞,結果顯示和假 SARS 或假 MERS 結合力很強的 VHH 可以抑制病毒,結合力若的則沒有抑制的效果,其中以 VHH-72 的效果最好,9 nM 就可以達到抑制的效果。另外,VHH-72 雖然和 SARS S protein RBD 的結合力很強,但是 ELISA 的結果顯示它對 SARS S protein NTD (N-terminal domain) 沒有反應,表示 VHH-72 是透過和 RBD 結合來抑制病毒。

這個研究裡我比較訝異的是他們也分析了小抗體和病毒結合的 crystal structure,發現 VHH 抑制病毒的機制應該是把 Spike 的 RBD 固定在某個 conformation,使它不能動。VHH-72 是透過其 CDR2 和 CDR3 和病毒結合,但結合點和 ACE2 似乎不同,和 ACE2 競爭的不是 CDR2 或 CDR3,而是比較遠的 FR (framework region)。


Figure / The Crystal Structure of SARS VHH-72 Bound to the SARS-CoV-1 RBD (Wrapp et al, Cell 2020)

因為新冠病毒的 Spike protein 和 SARS 的很像,所以他們想知道 VHH-72 是否也可以抑制 SARS-CoV-2 的感染。他們發現 VHH-72 也會和新冠病毒的 S protein RBD 結合,但是 binding affinity 比較低。他們的 crystal structure 分析結果顯示 VHH-72 是和 SARS S RBD 的 R426 接合,而這個氨基酸在 SARS-CoV-2 則是 N439,這可能是造成 binding affinity 的原因。為了增強 binding affinity,他們試了兩種方法:一是用 (GGGS)3 linker 把兩個 VHH-72 尾接頭的連在一起(VHH-72-VHH-72),一是在它後面接一個 IgG Fc (VHH-72-Fc)。ELISA 測試的結果顯示,這兩種都會會 SARS S 和 SARS-CoV-2 S 結合,並且細胞實驗顯示 VHH-72-Fc 可以抑制假 SARS 和假 SARS-CoV-2。

有意思的是 VHH-72 在病毒 S protein 的結合點似乎和之前發表過的抗體不同,倒是和 CR3022 類似,不過 CR3022 並無法抑制 SARS-CoV-2。

相關文章:近期和新冠病毒抗體相關的研究

哦,另外還有一個重要的點,就是這個小抗體可以在動物細胞裡大量表現,別以為這沒什麼,你如果遇過那種在三種細菌株裡都表現不出來,要不就表現出來但是不 soluble 的 VHH 就知道苦了。(現在每天都在和 phage display 還有 VHH 奮戰的苦主 QQ)

其實這篇研究的另一半是 MERS 和它的 VHH,有興趣的人可以看看。



Article:

UT NEWS / Antibodies from Llamas Could Help in Fight Against COVID-19 (Apr 2020)

TN / Llama Antibodies Could Help Fight Against COVID-19 (May 2020)


Paper:

Wrapp et al, Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell (2020)












2020年5月9日 星期六

舊藥新用(repurposing):SARS-CoV-2

所謂的舊藥新用就是用已經通過 FDA 或是已經在市面上的藥去治療原本目標疾病以外的其他疾病,repurposing 的好處是因為已經通過臨床或是已經通過 FDA,所以省掉第一期臨床安全性試驗的金錢和時間,舊藥新用的例子包括原本用來治療攝護腺腫大(benign prostatic hyperplasia)的藥 Finasteride 被新用來治療禿頭。

Drug bank: Finasteride

相關文章:舊藥新用(repurposed drug) GCSF -- 治療中風

另外一個例子就是 Gilead 原本用來治療愛滋的 Remdesivir,其機制是抑制 RNA 病毒的 RdRP (RNA-dependent RNA polymerase)。之前在日本被用來治療慢性胰臟炎以及皮膚癌的 camostat mesylate (Foipan) 最近也被用來試驗在 COVID-19,因為它是 serine protease inhibitor,可以抑制幫助 SARS-CoV-2 進入細胞的 TMPRSS2。

NCATS: camostat mesilate

DrugBank: camostat mesilate

相關文章:近期和新冠病毒抗體相關的研究

這篇研究也是想從舊藥裡面找出可以治療 COVID-19 的藥物,他們在人類細胞裡面分別表現了 SARS-CoV-2 其中的 26 個蛋白,想找出和它們結合的人類蛋白,然後再從裡面找出是否已有針對這些蛋白的藥物。他們釣出來和新冠病毒蛋白有 interaction 的人類蛋白其實滿多樣的,他們稱之為 interactome,其中包括了參與 DNA replication, vesicle trafficking, innate immune pathways 和 ubiquitin ligase complex 等等的蛋白。經過分析,他們發現有 69 個藥物是針對這些蛋白,其中有 29 個已通過 FDA,12 個在臨床試驗中,28 個將進入臨床試驗,而這些藥物中,有些是有抗病毒功能的(anti-viral activity)。這些藥物大致分為兩種,一種是抑制蛋白生產的,包括 zotatfin 和 ternatin-4;另一種是 Sigma1/2 receptors 的 ligands,包括 PB28, haloperidol 和 hydroxychloroquine (奎寧)。目前在紐約其巴黎各有一個機構在測試他們找出來的其中 47 個 compounds 的效用,結果發現 PB28, zotatifin 和奎寧可以在病毒進入細胞後,降低病毒蛋白的表現,有趣的是 PB28 和 zotatifin 都比奎寧有效。

註:zotatifin 是 eIF4A inhibitor,而 eIF4A 主要功能在 mRNA translation。ternatin-4 則是 eEF1A inhibitor,也是作用在 mRNA translation。

抑制病毒的 translation 似乎有效,但要注意的是這篇研究目前還都是在細胞實驗,紐約的試驗機構是 Mt Sinai Hospital,但這篇裡面沒提到臨床試驗結果。



Publication:

DE Gordon et al, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature (2020)










2020年5月8日 星期五

血清檢測|受新冠病毒感染人口到底有多少?

最近這篇研究滿多人在傳的(not peer-reviewd),就是美國加州在四月初檢測了約 3300 位透過臉書廣告徵來的 Santa Clara 的居民,發現每 66 位就有一位曾感染過 SARS-CoV-2,由此數據估算出兩百萬居民中大概有 48000 - 82000 位居民感染過病毒,比官方檢測出的一千位多了約 50 倍以上。(如果取中間值算,假設是 65,000 位居民已感染過,那就是大約 3.25% 的盛行率。)除此之外,德國在月初發表的血清檢測也顯示相似的結果,七人中有一人感染過新冠病毒,和 qPCR 交叉檢測的結果,估約整個城市的感染率為 15%,不過德國的病毒專家說,這麼高可能是因為二月的時候,城中有一個慶祝活動。

註:盛行率為 prevalence,為感染人口除以總人口數,分母不是檢驗人口。

雖說這個血清檢測的結果顯示很多人已感染過,相對來講也就是把致死率(infection fatality rate, IFR)的分母變大了,以 Santa Clara 的例子來說,這表示 48000 - 82000 中的死亡人數為約一百人,等於是 0.1% - 0.2%。不過,血清檢測要注意的是偽陽性(false positive)和偽陰性(false negative)的問題,如果不夠 specific,很可能很多是 false positive,也就是說其實感染人數並沒那麼多;如果不夠 sensitive,則有可能出現很多 false negative。

參與 Santa Clara 這個研究的學者說,他們同時也測試了這個 kit (Premier Biotech, Minnespolis, MN) 的 sensitivity 和 specificity,他們先檢測了已知的 85 個確診案例和 371 個陰性案例,結果顯示有兩個 false positives。他們另外也用在地居民做測試,檢測了已在 Stanford Hospital 用 qPCR 驗過的 37 陽性案例和 30 位陰性案例,交叉比對的果顯示只有 68% 的陽性案例被測到,所有陰性則為 true negative。兩者合併的估算下,這個 kit 的 sensitivity 大約是 80.3%,specificity 約為 99.5%。用調整過的 sensitivity 和 specificity 去估算的結果顯示 Santa Clara 的盛行率(seroprevalence)大約介於 2.49% - 4.16%,也就是說整個城市約有 48,000 - 81,000 已受過感染,是官方確診數的五十倍左右。



News:

Nature / Antibody tests suggest that coronavirus infections vastly exceed official counts (April 2020)


Paper:

E Bendavid et al, COVID-19 Antibody Seroprevalence in Santa Clara County, California. medRxiv (2020)










2020年4月18日 星期六

近期和新冠病毒抗體相關的研究

可能現在大家都知道 SARS 和 SARS-CoV-2 都是利用自身的 spike protein (S protein) 和人類細胞表面的 ACE2 結合而進入細胞的,因此阻斷 S protein 和 ACE2 的結合變成目前藥物研發的主要標靶,最近好幾篇研究都是關於用抗體去達到這個目的。

SARS-CoV-2 S protein 位於病毒的表面,是個醣化蛋白(glycoprotein),會三個組成一體(trimer)。S protein 本身又大致分成三個 domains: N-terminal S1, S2 & C-terminal TM (transmembrane) domain,S1 和 S2 之間有個 furin cleavage site,S1 裡包含了 RBD (receptor-binding domain),負責和 ACE2 結合,結合了之後 S1/S2 會被切開露出 S2,CoVs 的 S2 會進一步在 S2' site 再切割一次,這個切割會露出 S2 的 fusion peptide,可以讓病毒和細胞膜結合,使其進入細胞內。


Figure / Structure of 2019-nCoV S in the prefusion conformation (Wrapp et al, Science 2020)

Walls et al 發表在 Cell 的研究顯示 SARS-CoV-2 和 ACE 結合的 affinity 和 SARS 的差不多,他們也發現和 SARS不同的是 SARS-CoV-2 有個 furin cleavage site,SARS 的是一個 arginine (R),SARS-CoV-2 則是 RRAR。SARS S protein 的 S1/S2 cleavage site 可以被細胞內蛋白酶 CatB/L (cathepsins B/L, cysteine protease) 和 TMPRESS2 (serine protease) 切割, 因此 Hoffmann et al 他們也測試了這兩個蛋白酶,看看他們是否也能切割 SARS-CoV-2 的 S protein,結果顯示除了 furin protease,SARS-CoV-2 也用 TMPRSS2,CatB/L 則是可有可無。另外,臨床使用的 serine protease inhibitor camostate mysylate,同時也是 TMPRSS2 inhibitor,也顯示可以抑制 SARS-CoV-2 進入細胞。如果和 CatB/L inhibitor E-64d 一起使用,則可以完全阻止病毒感染,在沒有 TMPRSS2 的情況下,SARS-CoV-2 也可以用 CatB/L。

Hoffmann et al 除了發現 SARS 和 SARS-CoV-2 都是透過 ACE2 進入細胞,而且帶有 ACE2 抗體的血清可以阻止這兩個病毒進入細胞外,也發現從 SARS 康復患者體內取出 anti-SARS 的抗體是 anti-S antibodies。他們取了三位 SARS 康復患者的血清測試,發現可以降低 SARS-CoV-2 感染,雖然效用比 SARS 較低。不過,他們把 SARS S1 打入兔子體內後產生的抗體可以有效抑制 SARS 和 SARS-CoV-2 感染細胞。另外,Walls et al 他們的結構研究顯示 SARS 和 SARS-CoV-2 的 S proteins 非常相似,SARS 的抗體很可能會和 SARS-CoV-2 有 cross-reactivity 而可以也抑制 SARS-CoV-2,於是他們把 SARS- S 打入老鼠體內,然後測試其產生的抗體是否能抑制 SARS-CoV-2,結果發現可以。由以上看來,對抗 SARS 的抗體或是疫苗可能對現在的 SARS-CoV-2 也多少有某種程度的效用。

不過,有趣的是之前 Cryo-EM 的那篇試了三個 SARS 的 anti-S RBD 的抗體(S230, m396, 80R),想說竟然結構那麼像,不知道有沒有 cross-reactivity,沒想到那三個抗體都無法辨識 SARS-CoV-2。這個結果和 Walls et al 還有 Hoffmann et al 的不同的原因可能是因為這兩篇的研究產生的 polyclonal antibodies 可能抓到的是 S protein 的 S2 domain,而這篇用的是 anti-RBD (S1) antibodies。

相關文章:關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊

這個月,Scripps Research 的團隊在 Science 發表了 SARS 抗體和 SARS-CoV-2 結合的研究,他們發現 SARS 和新冠病毒和抗體的結合點幾乎一樣,也許是為什麼 SARS 抗體和 SARS-CoV-2 會有 cross-reactivity 的原因。他們研究的一個 SARS 的抗體 CR3022 是荷蘭的一家藥廠 Crucell Holland B.V. 於 2016 年從 SARS 康復患者體內釣出的,年初的時候有研究發現 CR3022 和新冠病毒有 cross-reactivity,於是 Scripps Dr. Wilson 的研究團段想知道這個抗體是怎麼和 SARS-CoV-2 結合的,結果發現這個抗體和 SARS 及 SARS-CoV-2 S protein RBD 結合的點非常相似。有趣的是病毒和 CR3022 的這個結合點和它和 ACE2 的結合點有些距離,因此不存在競爭的關係。另外,這個結合點在平常的狀態並不在病毒的表面,而是當 RBD 處於某種狀態下才會出現在表面的地方。在細胞實驗中,CR3022 雖然可中和 SARS,但卻無法中和 SARS-CoV-2。因為有太多迷點,所以目前還不了解和 CR3022 的這個結合點在病毒感染的真正功能是什麼,不過至少知道這個抗體是用不同的機制來抑制病毒感染。



Articles:

TN / Clues to SARS-CoV-2 Vulnerability Emerge (April 2020)


Publications:

AC Walls et al, Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell (2020)

M Hoffmann et al, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell (2020)

M Yuan et al, A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science (2020)

D Wrapp et al, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (2020)










BC CDC / UBC COVID-19 virtual symposium

上禮拜四的 BC CDC / UBC COVID-19 symposium,因為當天大爆滿,有的 speakers 甚至無法進到 Zoom,於是 UBC MedIT 就即時用了一個 live steam link,並且說這週會放到網上,剛剛收到 email 說已經放在 YouTube,有興趣的可以去看了。

Virtual BC COVID-19 Symposium



Introduction and Overview
Bonnie Henry, Provincial Health Officer
David Patrick, BCCDC; UBC
Robert McMaster, UBC

Diagnostics, Genomics and Transmission Dynamics
Natalie Prystajecky
Mel Krajden, BCCDC
Steve Jones, GSC
Peter Unrau, SFU

Clinical Trials and Patient Management
Josef Penninger, UBC
Srin Murthy, UBC
Jim Russell, UBC
Richard Lester, UBC

Epidemiology & Public Health Response
Danuta Skowronski, BCCDC
Manish Sadarangani, BCCH
Caroline Colijn SFU & Michael Otterstatter

Social Dynamics, Communications and Trust
Cynthia Jardine, University of The Fraser Valley
Yue Qian, UBC
Kelley Lee & Julia Smith, SFU
Emily Rempel, CDC

Development of Therapeutics and Vaccines
Bo Barnhart, AbCellera, Inc
Artem Cherkasov, UBC
Eric Jan, UBC
Francois Jean, UBC
Horacio Bach, UBC
Sriram Subramaniam, UBC
Wilf Jefferies, UBC
Leonard Foster, UBC
James Taylor, Precision NanoSystems
Lindsay Eltis, UBC

Final Discussions and Summary

下面是上禮拜聽的時候截圖的筆記



BC testing capacity. Genome BC is involved, too.



BC's sequencing equipment



BC COVID-19 WGS (whole Genome Sequencing) - mostly from Washington state and Europe



WHO's SOLIDARITY projects: clinical trials of the 4 focused treatments

Canada also participates: Canadian Arm of SOLIDARITY (CATCO)

Science / WHO launches global megatrial of the four most promising coronavirus treatments (March 2020)



ARBs (angiotensin II type 1 receptor blockers)

clinical trial: Coronavirus ACEi/ARB Investigation (CORONACION)



Causes of ACI and how SARS-CoV-2 is related to it.





UBC's APN01 works against ACE2

可參考:UBC 研發的藥物將進入臨床試驗 -- soluble hrsACE2



BC 和全加拿大的新冠病毒患者的年齡分佈



tracking COVID-19 by sero-prevalence survey

之前看到 UCSF 在做血清檢測,想說 BC 應該也要做一下,原來真的有計畫要做。

Science / Unprecedented nationwide blood studies seek to track U.S. coronavirus spread (April 2020)



患者體內免疫反應的研究,確診患者如果還在症狀出現後的十四天內,想為疫苗研發貢獻一份心力的,可和研究團隊聯絡,e-mail 如上。

相關文章:武漢肺炎輕症患者體內的免疫反應



BC 目前和計畫中的相關研究





Transmission & control modelling for decision making and public health response



BC 目前是最右邊那個



AbCellera antibody discovery - they use single cell sequencing



他們有和美國 NIH 和 Eli Lilly 合作。

AbCellera news press: AbCellera and Lilly to Co-develop Antibody Therapies for the Treatment of COVID-19










2020年4月10日 星期五

UBC 研發的藥物將進入臨床試驗 -- soluble hrsACE2

前兩天 Cell 刊登了之前 UBC 研發用來治療 COVID-19 的藥物 [1],這個研究有多個團隊參與,包括了溫哥華的生技公司 STEMCELL Techonologies。他們研發的藥物 APN01 (human recombinant soluble angiotensin-converting enzyme 2; hrsACE2) 很快便會進入臨床試驗,由歐洲的生技公司 Apeiron Biologics 進行。


這個研究團段已經研究 SARS 很久了,在之前的研究中,知道了:

1. SARS-CoV 和 SARS-CoV-2 都是透過 spike protein 的 RBD (receptor-binding domain) 和人類的 ACE2 結合而進入細胞 [2]。
2. SARS-CoV-2 和 ACE2 的 affinity 比 SARS 強
3. 老鼠實驗中,大量表現 ACE2 的基轉老鼠在感染 SARS 後的病況比較嚴重 [2]。
4. ACE2 除了表現在肺部的表皮細胞,也表現在心臟、腎臟、血管和腸胃細胞,這可能是為什麼有些病患有腸胃道等等的症狀 [1]。
5. 之前的細胞實驗顯示 protease inhibitor camostat mesylate 可以抑制 SARS-CoV-2 的繁殖
6. hrsACE2 已在 2017 年時進入第一、二期的臨床試驗,原本是要用來治療 ARDS (acute respiratory distress syndrome, 急性呼吸窘迫症候群) [3]。


Figure / Possible intervention of SARS-CoV-2 replication (Science 2020, doi:10.1126/science.abb8497)

說是藥物,其實 hrsACE2 就是合成的人類 ACE2,他們的想法是既然 SARS-CoV-2 是透過 ACE2 進入細胞的,那他們就把大量的合成 ACE2 打入體內,使他們和病毒結合,當病毒表面的 RBD 都被合成的 ACE2 塞滿之後,就沒辦法再和細胞表面的 ACE2 結合了,進而達到抑制病毒感染的效果,跟抗體藥類似的概念。

在他們的細胞實驗中,hrsACE2 可以有效的中合病毒,使其無法接觸 ACE2 和進入細胞,但是老鼠的 mrsACE2 便沒有抑制的效果。然後他們試驗在基改的小血管和腎臟,受到 SARS-CoV-2 感染的基改器官在感染的三到六天後都可以檢測到病毒,而加惹 hrsACE2 後則明顯地降低了病毒感染;同樣的,老鼠的 mrsACE2 則沒有抑制 SARS-CoV-2 感染的效果。

要注意的是:
1. hrsACE2 跟其他的抗體一樣,無法完全抑制病毒感染,抑制效果和劑量相關,但也不排除有除了 ACE2 之外的 co-receptor 的可能。
2. hrsACE2 主要是抑制病毒進入細胞,如果病毒已進入細胞,hrsACE2 就沒有太大作用。
3. 這個實驗著重在血管和腎臟細胞,但 SARS-CoV-2 感染的主要器官是肺部。



Articles:

UBC News / Trial drug can significantly block early stages of COVID-19 in engineered human tissues

Science / WHO launches global megatrial of the four most promising coronavirus treatments (March 2020)


Publication:

1. V Monteil et al, Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell (2020)

2. K Kuba et al, A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine (2005)

3. Y Imai et al, Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature (2005)











2020年3月28日 星期六

武漢肺炎輕症患者體內的免疫反應

在上週發表的 Nature Medicine 裡有一篇是關於輕症患者體內的免疫反應,我相信台灣應該也有康復者的資料,只是不知道有沒有觀察其免疫反應。

這篇是個案,雖說每個人體質不太一樣,但應該也差不了多少,有些復原後的情形也和之前一些康復患者的報告結果一致。

這位個案是從武漢到澳洲墨爾本的 47 歲女士,抵達澳洲的一週後出現 lethargy, sore throat, dry cough, pleuritic chest pain, mild dyspnea, subjective fevers 這些這症狀,出現症狀四天後去墨爾本的急診。他沒去過那個海鮮市場,也沒接觸過已知患者。患者會加入研究是透過 Sentinel Travelers Research Preparedness Platform for Emerging Infectious Diseases novel coronavirus substudy (SETREP-ID-coV)。

患者健康狀況:沒抽煙、沒有服用藥物,身體算健康。

進醫院時的臨床診斷:
- 體溫為 38.5C
- 脈搏每分鐘 120 下
- 血壓 140/80 mm Hg
- 胸部聽診有 bi-basal rhonchi
- 沒有呼吸道併發症
- 沒有急性呼吸道衰竭症狀
- 出現症狀後第四天,RT-qPCR 有測到病毒,直到第六天都測到病毒,但第七天開始顯示為陰性,血液內 C-reactive protein 增加,免疫細胞數量正常。


Figure / 病患復原情況和病毒檢測結果,可以看到雖然咳嗽持續到第 11 天,但第七天開始檢測結果就都是陰性了,病毒量已經降低到測不到。(Thevarajan et al, Nature Medicine 2020)

治療方式:打點滴補充水份,沒給氧氣,沒給抗生素、類固醇或抗病毒藥物。

恢復狀況:症狀開始後第五天的胸部 X 光顯示有 bi-basal infiltrates (肺浸潤),但是第十天時已經沒有肺浸潤的情況,於是第十一天便讓他回家自主管理,第十三天已完全康復,但還是在家待到第二十天,直到第二十天還是無恙。

體內免疫反應進程:

1. 出現症狀後第 7 到 20 天血液內和新冠病毒(SARS-CoV-2)有反應的 IgG 和 IgM 抗體大量增加。

2. ASCs (antibody-secreting cells)和 CD4+ T cells 於血液中病毒清乾淨後的第七天開始出現。ASCs在第八天達到高峰,CD4+ T cells 則在第八、九天持續增加。這兩個細胞在患者中的高峰期皆比健康個體高很多,而且直到第 20 天康復後都還存在患者體內。CD8+ T cells 也是從第一天開始快速增加直到第九天,但是在第 20 天開始下降。在得流感或施打流感疫苗後,這些免疫細胞也會大量增加。

3. Cytokines & chemokines:H7N9 重症患者體內會大量增加的 IL-6, IL-8, IL-10, MIP-1β 和 IFN-γ 在有症狀的第七到九之間都沒有顯著增加。


在看到輕症患者康復後肺部也會受損的臉書文後,看了這篇後感到心安一些。



原論文:I Thevarajan et al, Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine (2020)










新冠病毒(SARS-CoV-2)檢測 -- qPCR 和抗體檢測(續)



有看中研院那篇的就知道,目前檢測新冠病毒的方法有三:

1. qPCR:檢測體內是否有病毒 RNA,知道 primers 就可以用來檢測,不需要另外研發,相對準確,敏感度高(sensitivity),但需四到六小時,包含運送檢體時間等等的 turnaround time 至少要一天。不過目前 UCSF, Mammoth 和加州 Public Health 部門合作研發的 SARS-CoV-2 DETECTR 利用 CRISPR 技術似乎可以快速檢測,加上 RNA extraction 的時間只要 45 分鐘。

2. 用抗體檢測體內抗原(也就是病毒):跟 qPCR 比起來準確度較低(需要注意有沒有 cross-reactivity),也需要時間研發,但是檢驗方法簡單,速度也快,turnaround time 約二十分鐘到一小時。(下圖的第三種 sandwich assay)

3. 用抗原(也就是病毒蛋白)檢測體內是否有抗體:研發時間沒上面那個長,比較簡單,檢驗方法也同樣簡單和快速,但需要等到症狀出現後,病患體內產生抗體才測得到,通常是用來追蹤是否曾經感染過。(下圖的第一種 direct assay 或第二種 indirect assay)

相關文章:新冠病毒(SARS-CoV-2)的檢測 -- qPCR 和抗體


Figure / Diagram of common ELISA formats (direct vs. sandwich assays)(Thermo Fisher)

註:抗體檢測的原理跟 ELISA 相同,可以固定抗原(antigen)去測體內抗體(antibody),如上圖的第一種和第二種,這種只要有抗原就可以測,或是固定抗體去測體內是否有抗原,如上圖中的第三種,這種比較需要花時間先去研發出好的抗體。

相關文章:簡單檢測新冠病毒抗體

Nature 的這篇介紹了幾個正在研發的抗體檢測,第一個介紹的就是中研院楊老師的那個 LFIA!和大多數用 S (spike) protein 做抗原的抗體檢測不同的是中研院用的是 N (nucleocapsid) protein,其中一株抗體和 SARS 還有其他種冠狀病毒的 spike protein 沒有 cross-reactivity。不過看了這篇才知道,中研院的抗體是用 AI 去模擬 Ag-Ab interactions 後製造出來人造抗體 libraries,然後再用 phage display 去抓出抗體,而不是用動物去製造抗體,或是從康復患者體內釣出來,因此省掉了兩個月的時間。(也就是說中研院有抗體的基因序列,可以大量生產,也許可以測試是否能用於治療,不過我覺得 anti-spike 的抗體應該會比較有效果。)

相關文章:Phage display 和小抗體製造


Figure / Schematic representation of a LFIA device (Banerjee et al, Analyst 2018; doi: 10.1039/C8AN00307F)

抗體檢測大多用 LFIA (lateral flow immunoassay) 式的快篩,原理跟 ELISA 相同,只是長得像驗孕棒 XD。如上圖的 LFIA 所示,用的是 sandwich assay,也就是把抗體固定在檢測棒上面,然後先讓(可能含有病毒)的血液和帶有染劑的抗體混合,然後讓混合後的血液和抗體流過檢測棒,如果有血液含有抗原(也就是抗原)的話,就會被固定在檢測棒的抗體抓住。另一條 control line 是抓多餘的帶有染劑的抗體,也就是確認有足夠的抗體,並且有作用。因此如果血液中有病毒的話,就會有兩條線,沒有的話就會只出現 control line 那條線。

第二個介紹的是加拿大的公司 Sona Nanotech (Halifax-based),他們是和 GE 合作研發的 LFIA,抗原用的是 spike protein 的 S1 domain,目前預估是六到八週內可以有供研究使用的產量。

如最之前說的,檢測體內是否有對抗病毒的抗體相對簡單,只要純化出抗原就可以下去測了,德國柏林的 Pharmact 已經有二十分鐘的抗體快篩檢測,用的抗原是 N protein 和 spike protein 的 S1 和 S2 domain,可以用來檢測患者體內是否有這兩個病毒蛋白的抗體,這個快篩可以檢測到 IgM 和 IgG,IgM 是人體受感染後最先產生的抗體,之後再產生 IgG。他們和 qPCR 結果做比較,結果顯示準確度很高 -- 100% true negative 和 0% false positive,不過缺點是敏感度低,因為一開始的 IgM 反應並不高,感染後的 4 - 10 天內測到的敏感度只有 70%,但是第 11 天到第 24 天可以測到 92.5%,IgG 在這幾天測到的比例也高達 98.6%,因此整體 false negative 比例約為 13%。

關於患者體內的免疫反應可參考:武漢肺炎輕症患者體內的免疫反應


其他相關文章:關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊



Article:

Nature / Fast, portable tests come online to curb coronavirus pandemic (March 2020)


Papers:

JP Broughton et al, Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay. MedRxiv (2020)

R Banerjee & A Jaiswal, Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst (2018)









2020年3月21日 星期六

簡單檢測新冠病毒抗體

這篇研究提供了簡易的檢測方法,而且有詳細的 protocol,不過還沒有經過 peer-review (這篇之後在五月時刊在 Nature Medicine),研究團隊是在紐約的 Icahn School of Medicine at Mount Sinai。總之非常簡單,有在純化蛋白和做 ELISA 的實驗室都可以做到,不需要 P3 實驗室,就差能不能自己抽血而已。(好想試 XD)

主要是純化抗原,然後用 ELISA 檢測人體內是否有新冠病毒的抗體,之前澳洲得那篇研究顯示在症狀開始後第七天,患者血液裡可以測到 IgM,這篇則是在症狀開始的第三天就可以檢測到抗體。(如果不懂抗體檢測的,可以去看中研院的那篇解釋。XD)

相關文章:武漢肺炎輕症患者體內的免疫反應

抗原:
1. Spike-thrombin-foldon-6xHis
2. SS-RBD-6xHis

- SARS-CoV-2 Spike protein (full-length): M1-P1213; GenBank MN908947.3
- RBD (receptor-binding domain): R319-F541
- SS: signal peptide (M1-S14)
- thrombin: thrombin cleavage site
- foldon: T4 foldon (trimer)

Expressing vectors:
1. mammalian: pCAGGS; Epi293F cells
2. baculovirus: pFastBacDual

Purification:
1. Ni-NTA (room temp)
2. Buffer exchange to PBS

Human serum samples:
1. 大概五十個血清庫裡的檢體,年齡範圍在 20 到 65 歲以上,應該都是健康個體,是用來檢測 ELISA 的背景訊號的,確認檢測的 specificity。
2. 三位康復患者的血清
3. 十二位新冠病毒急性患者的血清

患者血清檢體:
1. 新冠病毒患者症狀開始後第二、四、六和二十天
2. 新冠病毒患者康復後(同個體):症狀開始後第三十天
3. 冠狀病毒 NL63 和 229E 的患者:NL63 也是用 ACE2
4. 其他傳染病患者康復後:包括登革熱患者

註:會引起疾病的人類冠狀病毒至少有七種,其中有四種是全球季節性的,未引起輕微的呼吸道疾病,包括有 HCoV-HKU1, HCoV-OC43, HCoV-NL63 和 HCoV-229E,其中 NL63 和 229E 為 alphacoronavirus,另外兩個則是 betacoronavirus。會引起重症的 SARS 和 MERS,以及目前的 SARS-CoV-2 也是 betacoronavirus。

ELISA:
1. Coating: 2 ug/ml (in PBS), 50 ul/well, O/N at 4C
2. Blocking: 3% milk (PBS-T), 1h at room temp
3. Serum: diluted in 1% milk/PBS-T, 2 hrs at room temp
4. 2'Ab: goat-anti-human IgG HRP (1:3000, in PBS-T), 1 h at room temp


Figure / Reactivity of control and SARS-CoV-2 convalescent sera to different spike antigens (Amanat et al, medRxiv 2020)


結果:

1. 在 mammalian cells 裡的表現竟然比較好,mRBD (mammalian RBD) 可以達到 25-50 mg/L,mSpike (mammalian Spike) 也有 5 mg/L,RBD 的表現在 insect cells (iRBD) 則只有 1.5 mg/L,iSpike (insect Spike) 也只有 0.5 mg/L。

2. 在 insect cells 裡表現的 RBD 大小比在動物細胞裡較小,可能是因為在動物細胞裡表現的有被醣化,所以在蛋白膠上顯現的 band 會比較高。

3. 症狀出現後第三天就可以測到抗體

4. 所有新冠患者的血清都和 Spike 還有 RBD 有強烈反應,對 Spike 的反應比 RBD 強,其他傳染病患者的血清則沒反應。

5. 用 mRBD 和 mSpike 測出來的康復患者血清和健康個體血清的差距比較大,相較於 iRBD 和 iSpike,差距比較顯著。

6. 冠狀病毒 299E 和 NL63 患者的血清也對新冠病毒的 Spike 和 RBD 沒反應,表示沒有 cross-reactivity。

7. ELISA 的結果也可以分辨出其他傳染病患者和康復後的新冠患者。

8. 抗體 CR3022 對 mSpike 和 mRBD 有強烈反應。(關於 CR3022 可參考這篇:近期和新冠病毒抗體相關的研究

9. 那五十幾個血清庫裡的血清對 mRBD 和 mSpike 沒反應,但是大多數卻對 229E 和 NL63 的 Spike protein 有強烈反應。

10. 有反應的抗體種類為 IgG3, IgM 和 IgA

11. 基於安全考量,他們也是惹 heat inactive serum,效果和沒有 heat-inactivated treated serum 差不多,一樣可以測到抗體,表示不需要 P3 實驗室就可以做。

12. 有不少新冠病毒康復患者的血清可以中和病毒,實驗結果顯示可以抑制病毒感染,這和 US CDC Okba et al 發表的結果是一致的。



Article:

Science / New blood tests for antibodies could show true scale of coronavirus pandemic (March 2020)


Papers:

F Amanat et al, A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine (2020)

F Amanat et al, A serological assay to detect SARS-CoV-2 seroconversion in human. medRxiv (2020)

Okba et al, Severe Acute Respiratory Syndrome Coronavirus 2−Specific Antibody Responses in Coronavirus Disease 2019 Patients. US CDC Emerging Infectious Diseases (2020)










2020年3月6日 星期五

關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊

應該有人已經看過這篇論文了,是武漢病毒(SARS-CoV-2)的 cryo-EM,沒想到這麼快就做出來了。

簡單介紹一下這個病毒的 background:

1. enveloped, (+)RNA viruses:病毒的特點就是自帶基因和蛋白很少,都是用宿主細胞的,越小的病毒越是如此。(就像是平常住外面、兩三個禮拜回家一次的人,回去不用帶太多東西,因為可以用家裡的,可能只要帶牙刷、手機和錢包回去就好惹。XD)

2. 大部分病毒的主要自帶基因分為兩種:structural 和 non-structural (NS)。Structural 是組成病毒實體的蛋白,例如 envelope proteins 和 capsid proteins。Non-structural 則是負責病毒複製,例如 transcription factors (TFs) 或是 RNA polymerase (RdRp)。武漢病毒主要的自帶基因有 spike protein (S protein, 屬於 envelope protein), nucleoprotein (N protein), RNA polymerase。同一個家族的病毒通常自帶的基因都差不多,例如武漢病毒和 SARS 都自帶 spike protein 和 N protein。


Figure / Betacoronavirus virion (ViralZone 2020)

3. 武漢病毒和 SARS 的 spike protein 相似度為 86%,和蝙蝠冠狀病毒 RaTG13 的相似度則高達 98%,主要的差異是武漢病毒有一段 "RRAR" furin recognition site,而蝙蝠 RaTG13 和 SARS 的 protease cleavage site 則是只有一個 arginine (R),在流感病毒裡,其 hemagglutinin protein 帶有 furin binding site 的通常是毒性比較強的病毒株。除此之外,武漢病毒和 RaTG13 S protein 的 RBD 有十七個氨基酸不同。

4. 跟 SARS-CoV 屬於同樣的 species,進入宿主細胞的機制也差不多,是經由它表面的 spike protein 結合宿主細胞的 ACE2 (angiotensin-converting enzyme 2)。

5. Spike protein 是個 glycoprotein,也就是說它會被醣化(glycosylated)。通常 envelope viruses 的表面蛋白(envelope protein)是 glycoprotein。S protein 的結構主要分為幾個 domains:SS (signal sequence), NTD (N-terminal domain), RBD (receptor-binding domain), SD1/2 (subdomain 1, 2), TM (transmembrane domain) 和 CT (C-terminal tail) 等等其他一些小的 domains。三個 S proteins 會結合在一起形成一個 trimer,然後和 ACE2 接合以進入宿主細胞,負責和 ACE2 結合的為 RBD。

我朋友是做 protein binding 研究的,看到這篇的重點是 SARS 和 SARS-CoV-2 的 spike protein 結構非常像,但是抗體竟然沒有 cross reactivity,幾個已發表的 SARS-CoV RBD-specific 抗體都對 SARS-CoV-2 沒反應。而我純化蛋白做太多了,看到的重點都是怎麼純化這個蛋白。XD

1. 竟然可以從 293 cells 純化到 0.5mg/L 的蛋白。
2. 純化它的 ectodomain (1-1208)就夠研究和 ACE2 的 binding。
3. 純化它的 ectodomain 只要過兩個 columns:affinity + SEC,而且在 SEC 是只有一個 670kDa 的 single peak。


* RaTG13 spike protein: QHR63300.2
* SARS-CoV spike protein: NP_828851.1
* SARS-CoV-2 spike protein: QHD43416.1



原論文:

D Wrapp et al, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (2020)










2020年2月7日 星期五

關於謠言 | 武漢病毒的源頭到底是哪裡?

之前盲眼的尼安德塔石器匠已經寫過了,這篇只是我自己的整理。


Figure / Coronavirus virion (Scientific Animation)

1.
美國 University of North Carolina 於 2015 年十一月,發表了一篇關於 SARS 的研究在 Nature Medicine,說明 SARS 是依靠它的表面蛋白 SHC014 從動物身上傳染到人類身上的。SARS 和 MERS 原本是寄生在其他動物身上的,是怎麼跨物種傳染到人類身上呢?研究顯示中國蝙蝠帶的類 SARS 病毒 RsSHC014-CoV 和人類 SARS 病毒的 SCH014 序列很相似,但是有 15 個氨基酸不同,而這些不同決定 SCH014 是否能和人類的血管酵素(angiotensin converting enzyme II, ACE2)結合。他們把可以感染老鼠的 SARS-CoV 病毒改成可以表現蝙蝠冠狀病毒的表面蛋白 SHC014,結果顯示這個基改冠狀病毒可以和人類的血管收縮轉化酶(angiotensin converting enzyme II, ACE2)結合,並且可以有效的在人類呼吸道細胞中複製繁殖,顯示蝙蝠冠狀病毒很可能透過 SHC014 突變而傳染到人類身上。這篇研究出來以後引發許多討論,認為這類研究太危險,要是基改後的病毒不小心外洩可能會造成很大的問題。NIH 其實在 2013 年就決定停止給這類危險病毒的相關研究 funding,會給這個研究 funding 是因為可以幫助科學家們了解 SARS 的傳染機制,同時這個研究也在法令公佈之前就開始了。

2.
2017 年的時候,Nature 發了一篇關於中國蓋 BSL-4 實驗室的文章,最近被拿出來討論,因為網傳說這次的武漢病毒和其 BSL-4 lab 有關。中國在 2003 年的時候決定在武漢蓋第一個 BSL-4 級的實驗室,但因為種種因素,直到 2014 年年底才完成。實驗室有分四個等級,普通大學裡的只到 BSL-2,如果研究有用到癌症細胞或是人類病毒之類的,需要 BSL-2,通常做研究的都會用到,會有一個專屬的負壓細胞培養小房間。BSL-4 是最高等級,加拿大只有一個,就是 Winnepeg 的那個 National Microbiology Laboratory,會用到這個等級實驗室的有伊波拉病毒和 SARS。

武漢實驗室蓋完開始用之後,引來了一些質疑,像是中國是否可以 use it properly,尤其在他們官僚文化嚴重的情況下,是否會遵守只用規則。除此之外,中國還在哈爾濱、北京和昆明還再蓋共三個 BSL-4 lab,這也讓人質疑,中國是否需要那麼多個 BSL-4 lab,尤其是北京的 BSL-4 lab 曾外洩 SARS 多次。

3.
最近病毒分析結果認為和武漢病毒最相近的是雲南蝙蝠帶有的 RaTG13,而這株病毒為武漢病毒所擁有,上週武漢病毒所的石正麗發表在 Nature 的研究顯示武漢病毒和 RaTG12 的相似度為 96.2%,和 SARS 則只有 79.5%。另外,Nature Medicine 那篇基改 SARS 的研究石正麗也有參與,於是謠言四起,2017 年的那篇文章[2]因此最近在前面加了這段表示謠言未經證實,科學家們認為來源為那個市場:"Editors’ note, January 2020: Many stories have promoted an unverified theory that the Wuhan lab discussed in this article played a role in the coronavirus outbreak that began in December 2019. Nature knows of no evidence that this is true; scientists believe the most likely source of the coronavirus to be an animal market."



News:

The Scientist / Lab-Made Coronavirus Triggers Debate (2015)

Nature / Inside the Chinese lab poised to study world's most dangerous pathogens

Science / Mining coronavirus genomes for clues to the outbreak’s origins (2020)


Publication:

VD Menachery et al, A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine (2015)

P Zhou et al, A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature (2020)