顯示具有 phage display 標籤的文章。 顯示所有文章
顯示具有 phage display 標籤的文章。 顯示所有文章

2020年5月15日 星期五

從駱馬體內得到的新冠病毒小抗體

哎呀呀,已經有人做了啊。這篇的研究團隊是之前做 Spike protein Cyro-EM 的那個,原來他們也有做駱馬(llama)的小抗體研究啊。

相關文章:關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊

如果有看過我之前關於小抗體那篇的,就知道駱馬和鯊魚除了有普通的 IgG 之外,還有一種只有 heavy chain 的小抗體 HCAbs (heavy chain antibodies),如果只取它的 Fv (variable region),體積會更小,稱為 VHH 或是 nanobodies (Nbs)。這種小抗體要顧慮的地方比傳統 IgG 要少一些,例如不用考慮是否醣化(glycosylation),加上也較容易生產製造,所以近來也引起關注,可望作為另一種型態的抗體藥。

相關文章:關於抗體和抗體藥的一些小知識

根據文中所述,他們自 2016 年起就用駱馬研發對抗 SARS 和 MARS 的小抗體。駱馬被先後打入 SARS 和 MERS 的 Spike protein 後體內會產上對抗 Spike protein 的抗體,他們在打入抗原的六週後取出駱馬的淋巴球,然後再用噬菌體展示(phage display)從中釣出可以和 Spike protein 結合的小抗體。他們從從駱馬淋巴球裡抓到七個 MERS 的小抗體和五個 SARS 的小抗體,得到了小抗體的基因序列後,便在酵母菌裡大量表現,然在再用 ELISA 確認它是否真的能夠和病毒結合。經過試驗發現其中一個 VHH 可以中和 SARS,為 VHH-72,並且和 MERS 的 S protein 沒有 cross-reactivity。

註 1:抗原(antigen)對免疫系統來講就是外來物,因此可以是病毒或細菌,免疫系統在外來物入侵後即會產生抗體(antibody)對抗外來物。

註 2:一隻駱馬可以被打入五種抗原,之後在用 phage display 把分別的小抗體釣出來,想更瞭解細節的可參考之前的《 Phage display 和小抗體製造 》這篇。

接著,他們想測試這些 VHH 是否可以抑制病毒,於是他們改造了基改過無害的 lentivirus VSV,讓它們在表面表現 S protein,假裝是 SARS,然後看看這些假 SARS 病毒是否能夠進入細胞,結果顯示和假 SARS 或假 MERS 結合力很強的 VHH 可以抑制病毒,結合力若的則沒有抑制的效果,其中以 VHH-72 的效果最好,9 nM 就可以達到抑制的效果。另外,VHH-72 雖然和 SARS S protein RBD 的結合力很強,但是 ELISA 的結果顯示它對 SARS S protein NTD (N-terminal domain) 沒有反應,表示 VHH-72 是透過和 RBD 結合來抑制病毒。

這個研究裡我比較訝異的是他們也分析了小抗體和病毒結合的 crystal structure,發現 VHH 抑制病毒的機制應該是把 Spike 的 RBD 固定在某個 conformation,使它不能動。VHH-72 是透過其 CDR2 和 CDR3 和病毒結合,但結合點和 ACE2 似乎不同,和 ACE2 競爭的不是 CDR2 或 CDR3,而是比較遠的 FR (framework region)。


Figure / The Crystal Structure of SARS VHH-72 Bound to the SARS-CoV-1 RBD (Wrapp et al, Cell 2020)

因為新冠病毒的 Spike protein 和 SARS 的很像,所以他們想知道 VHH-72 是否也可以抑制 SARS-CoV-2 的感染。他們發現 VHH-72 也會和新冠病毒的 S protein RBD 結合,但是 binding affinity 比較低。他們的 crystal structure 分析結果顯示 VHH-72 是和 SARS S RBD 的 R426 接合,而這個氨基酸在 SARS-CoV-2 則是 N439,這可能是造成 binding affinity 的原因。為了增強 binding affinity,他們試了兩種方法:一是用 (GGGS)3 linker 把兩個 VHH-72 尾接頭的連在一起(VHH-72-VHH-72),一是在它後面接一個 IgG Fc (VHH-72-Fc)。ELISA 測試的結果顯示,這兩種都會會 SARS S 和 SARS-CoV-2 S 結合,並且細胞實驗顯示 VHH-72-Fc 可以抑制假 SARS 和假 SARS-CoV-2。

有意思的是 VHH-72 在病毒 S protein 的結合點似乎和之前發表過的抗體不同,倒是和 CR3022 類似,不過 CR3022 並無法抑制 SARS-CoV-2。

相關文章:近期和新冠病毒抗體相關的研究

哦,另外還有一個重要的點,就是這個小抗體可以在動物細胞裡大量表現,別以為這沒什麼,你如果遇過那種在三種細菌株裡都表現不出來,要不就表現出來但是不 soluble 的 VHH 就知道苦了。(現在每天都在和 phage display 還有 VHH 奮戰的苦主 QQ)

其實這篇研究的另一半是 MERS 和它的 VHH,有興趣的人可以看看。



Article:

UT NEWS / Antibodies from Llamas Could Help in Fight Against COVID-19 (Apr 2020)

TN / Llama Antibodies Could Help Fight Against COVID-19 (May 2020)


Paper:

Wrapp et al, Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell (2020)












2020年3月28日 星期六

新冠病毒(SARS-CoV-2)檢測 -- qPCR 和抗體檢測(續)



有看中研院那篇的就知道,目前檢測新冠病毒的方法有三:

1. qPCR:檢測體內是否有病毒 RNA,知道 primers 就可以用來檢測,不需要另外研發,相對準確,敏感度高(sensitivity),但需四到六小時,包含運送檢體時間等等的 turnaround time 至少要一天。不過目前 UCSF, Mammoth 和加州 Public Health 部門合作研發的 SARS-CoV-2 DETECTR 利用 CRISPR 技術似乎可以快速檢測,加上 RNA extraction 的時間只要 45 分鐘。

2. 用抗體檢測體內抗原(也就是病毒):跟 qPCR 比起來準確度較低(需要注意有沒有 cross-reactivity),也需要時間研發,但是檢驗方法簡單,速度也快,turnaround time 約二十分鐘到一小時。(下圖的第三種 sandwich assay)

3. 用抗原(也就是病毒蛋白)檢測體內是否有抗體:研發時間沒上面那個長,比較簡單,檢驗方法也同樣簡單和快速,但需要等到症狀出現後,病患體內產生抗體才測得到,通常是用來追蹤是否曾經感染過。(下圖的第一種 direct assay 或第二種 indirect assay)

相關文章:新冠病毒(SARS-CoV-2)的檢測 -- qPCR 和抗體


Figure / Diagram of common ELISA formats (direct vs. sandwich assays)(Thermo Fisher)

註:抗體檢測的原理跟 ELISA 相同,可以固定抗原(antigen)去測體內抗體(antibody),如上圖的第一種和第二種,這種只要有抗原就可以測,或是固定抗體去測體內是否有抗原,如上圖中的第三種,這種比較需要花時間先去研發出好的抗體。

相關文章:簡單檢測新冠病毒抗體

Nature 的這篇介紹了幾個正在研發的抗體檢測,第一個介紹的就是中研院楊老師的那個 LFIA!和大多數用 S (spike) protein 做抗原的抗體檢測不同的是中研院用的是 N (nucleocapsid) protein,其中一株抗體和 SARS 還有其他種冠狀病毒的 spike protein 沒有 cross-reactivity。不過看了這篇才知道,中研院的抗體是用 AI 去模擬 Ag-Ab interactions 後製造出來人造抗體 libraries,然後再用 phage display 去抓出抗體,而不是用動物去製造抗體,或是從康復患者體內釣出來,因此省掉了兩個月的時間。(也就是說中研院有抗體的基因序列,可以大量生產,也許可以測試是否能用於治療,不過我覺得 anti-spike 的抗體應該會比較有效果。)

相關文章:Phage display 和小抗體製造


Figure / Schematic representation of a LFIA device (Banerjee et al, Analyst 2018; doi: 10.1039/C8AN00307F)

抗體檢測大多用 LFIA (lateral flow immunoassay) 式的快篩,原理跟 ELISA 相同,只是長得像驗孕棒 XD。如上圖的 LFIA 所示,用的是 sandwich assay,也就是把抗體固定在檢測棒上面,然後先讓(可能含有病毒)的血液和帶有染劑的抗體混合,然後讓混合後的血液和抗體流過檢測棒,如果有血液含有抗原(也就是抗原)的話,就會被固定在檢測棒的抗體抓住。另一條 control line 是抓多餘的帶有染劑的抗體,也就是確認有足夠的抗體,並且有作用。因此如果血液中有病毒的話,就會有兩條線,沒有的話就會只出現 control line 那條線。

第二個介紹的是加拿大的公司 Sona Nanotech (Halifax-based),他們是和 GE 合作研發的 LFIA,抗原用的是 spike protein 的 S1 domain,目前預估是六到八週內可以有供研究使用的產量。

如最之前說的,檢測體內是否有對抗病毒的抗體相對簡單,只要純化出抗原就可以下去測了,德國柏林的 Pharmact 已經有二十分鐘的抗體快篩檢測,用的抗原是 N protein 和 spike protein 的 S1 和 S2 domain,可以用來檢測患者體內是否有這兩個病毒蛋白的抗體,這個快篩可以檢測到 IgM 和 IgG,IgM 是人體受感染後最先產生的抗體,之後再產生 IgG。他們和 qPCR 結果做比較,結果顯示準確度很高 -- 100% true negative 和 0% false positive,不過缺點是敏感度低,因為一開始的 IgM 反應並不高,感染後的 4 - 10 天內測到的敏感度只有 70%,但是第 11 天到第 24 天可以測到 92.5%,IgG 在這幾天測到的比例也高達 98.6%,因此整體 false negative 比例約為 13%。

關於患者體內的免疫反應可參考:武漢肺炎輕症患者體內的免疫反應


其他相關文章:關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊



Article:

Nature / Fast, portable tests come online to curb coronavirus pandemic (March 2020)


Papers:

JP Broughton et al, Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay. MedRxiv (2020)

R Banerjee & A Jaiswal, Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst (2018)









2018年12月8日 星期六

利用 peptide 檢測早期阿茲海默症

這是一年前的研究了 XD,我在刷臉書的時候看到有興趣但當下沒時間細讀的會先存起來,然後等有時間再打開來看,寫寫分享,然後不知不覺就積了很多沒看的,剛剛翻到這篇才發現竟然已經默默過了一年惹。(淚)

對阿茲海默症有點小了解的大概都知道治療此病的瓶頸主要有兩個,一是無法及早發現,通常發現時,也就是出現輕微失智症狀時(mild cognition impairment, MCI),已經太晚了,二是藥物無法通過 BBB (blood-brain barrier),因此目前除了藥物研發的研究,有的是針對如何在症狀未出現時便可即早發現。

動物腦部有一個蛋白是 CTGF (connective tissue growth factor),主要功能是免疫反應和組織修復,AD 基轉老鼠腦部的 CTGF 會在 Aβ 堆積前出現上升的現象。這篇刊在 Nature Communications 的研究利用 phage display 釣到了一個目標蛋白是 CTGF,長度為九個氨基酸的環形胜肽(cyclic peptide) ,稱為 DAG。

怎麼用 phage display 釣的呢?他們是用 CX7C library,CX7C 是九個氨基酸長的 peptide,第一個和最後一個(也就是第九個)氨基酸是 cysteine,中間七個氨基酸是隨機的,用的是 degenerate codons NNK [註1]。兩端的 Cys 會形成 disulfide bond,使這小段的 peptide 變成一個環狀,用來標靶癌細胞的 iRGD 就是一個例子 [註2]。(iGRD sequence: CRGDKGPDC)

註 1:K = G or T and S = C or G。
CX7C library 製作細節可參考這篇:Tero AH Järvinen 的這篇:Design of Target-Seeking Antifibrotic Compounds

註 2: 之前有不少研究是用 phage display 釣出各個器官的 homing peptides,就是說這些 peptides 只會出現在某些器官,也就是這些器官有其他器官沒有的標靶蛋白或標靶物,可以用來當作器官的 biomarkers。用來穿過癌細胞 iRGD 就是用這個方法找到的,有興趣的可以參考 T Teesalu et al 的這篇:Mapping of Vascular ZIP Codes by Phage Display

關於噬菌體展示 phage display 可以參考之前這篇:Phage display 和小抗體製造

CX7C library 裡的九個氨基酸長的 peptides 會表現在 T7 phage 的表面,研究者們再把這些 T7 phage 靜脈注射到老鼠體內。T7 phage 進到老鼠體內後會到處遊走,其表面的 peptide 其在遊晃的時候便可找尋和它相結合的蛋白質。他們把 T4 library 分別打入正常老鼠(wildtype)和不同階段的 AD 基轉老鼠裡(三個月、五個月、七個月和九個月大的老鼠),然後再取其海馬迴(hippocampus)做比較,看有哪些 peptides 會大量出現在 AD 基轉老鼠的海馬迴裡,但卻沒出現在正常老鼠裡的,表示它的標靶蛋白是 AD 腦部裡的某個蛋白,可用來做為阿茲海默症的 biomarker,或許也可以用在治療上。比較了之後,他們找到惹 DAG (序列為:CDAGRKQKC,通常以前三個氨基酸為名)。

DAG 出現在所有階段的 AD 基轉老鼠腦內,包括皮質(cortex)和海馬迴(hippocampus),表示早期的 AD 老鼠腦部就有可以作為 biomarker 的蛋白。接著,他們把 DAG 打入基轉 AD 老鼠裡後做了一連串的螢光染色,試圖找出 DAG 的標靶細胞和標靶蛋白,發現它出現在鄰近有 Aβ 的神經星狀膠質細胞(astrocytes)。另外,DAG 也出現在大腦皮質(cerebrocortex)的血管內皮細胞(biomarker: CD31),而它標靶蛋白是血管內皮細胞上的 CTGF。這個蛋白質表現在人類和老鼠的腦中,功能是啟動發炎反應和組織修復,腦部受傷後 CTGF 的表現量會上升。他們研究了 CTGF 在腦部的表現,發現和正常老鼠相比,它同樣大量表現在 AD 基轉老鼠的大腦皮質和海馬迴,而且也是出現在 astrocytes,他們也做惹 binding 測試,確認 DAG 的標靶的確是 CTGF。

之後,他們檢測了三、四個月大、Aβ 尚未出現的年輕 AD 基轉老鼠腦部,發現 DAG 大量出現在大腦皮質和海馬迴,主要在其血管內皮細胞,表示 DAG 的標靶是 CTGF 而不是 Aβ。為了確認 DAG 不只作用在老鼠腦部細胞,他們用 AD 患者的幹細胞做 binding 測試,是用 DAG-conjugated Ag-nanoparticle (DAG-AgNP) 去染細胞組織,發現可以看到 DAG。用病患的腦部切片測試的話,DAG-AgNP 則出現在含有大量 Aβ 的海馬迴,用螢光染色的話也可以看到 CTGF 同樣出現在海馬迴,表示 DAG 的標靶蛋白是 CTGF。看到這裡可能會覺得證據不夠有力,不過當他們在 DAG-AgNP 之前先加了 anti-CTGF 的抗體後,DAG-AgNP 的訊號就消失了,表示抗體阻斷惹 DAG-CTGF 的結合。 這裡有一點是我想知道,但是文章裡沒提到的,CTGF 在很多神經性疾病中都被發現表現量升高,而在這篇裡顯示疾病初期就可偵測到大量的 CTGF,我的話會想看到在正常老鼠和 AD 基轉老鼠裡,DAG, CTGF 和 Aβ 在三到九個月大的時候,表現量變化的比較。

最後就是 AD 治療的瓶頸,如何把 DAG 送進腦部?他們把 DAG 和帶有氧化鐵 (iron oxide) 的 nanoparticle 結合後,靜脈注射進九個月大的 AD 基轉老鼠裡,發現它可以進入到老鼠的大腦皮質和海馬迴。文章裡提到,這點可以用來做影像檢測 AD,但是 DAG 如果接了染劑或顯影劑後還能進到腦部嗎?



References:

NNR / Potential Biomarker for Early Detection of Alzheimer's (Nov 2017)

AP Mann et al, Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer’s disease. Nature Communications (2017)
https://www.nature.com/articles/s41467-017-01096-0

Tero AH Järvinen, Chapter 12 - Design of Target-Seeking Antifibrotic Compounds. Methods in Enzymology (2012); doi: 10.1016/B978-0-12-391858-1.00013-7

T Teesalu et al, Chapter 2 - Mapping of Vascular ZIP Codes by Phage Display. Methods in Enzymology (2012)










2018年10月7日 星期日

Phage display 和奈米抗體製造

之前聊過抗體的一些知識,這篇來介紹如何用 phage display (噬菌體展示)來製造抗體,這邊說的抗體是奈米抗體 VHH,也就是 nanobodies (Nbs)。如果還記得之前說過的,駱駝除了正常的 IgG 抗體外,還有一種只有 heavy chain 的小抗體(HCAbs),而 VHH 就是它的 variable region,很小,只有 14kDa 左右。和用老鼠產生抗體的方式類似,只是這是把抗原打到羊駝(llama, alpaca, 屬於駱駝科 Familiy: Camelidae)體內。

奈米抗體(nanobodies)的開發流程


整個用 phage display 研發小抗體的步驟大概是:

  1. Purify antigen (純化抗原)
  2. Immunization (把抗原打到動物體內讓他們產生抗體)
  3. Library building (製造抗體 library):整個過程包括抽取動物的免疫細胞(lymphocytes),從免疫細胞裡抽取 RNA,把 RNA 轉成 cDNA,PCR amplification,clone 到 phagemid 裡面後再 transform 到細菌裡做成細菌的 library。之後用 phage 去感染細菌,轉成 phage library。
  4. Biopanning & phage amplification: 從含有各種抗體基因的 phage library 裡面把不跟抗原反應的抗體洗掉,抓出和抗原抓出相對應的抗體。
  5. Phage ELISA: 利用 ELISA 釣出 positive clones,這個步驟是要從 biopanning 出來的一堆 phage 裡一個個挑出真的會和抗原反應的抗體。
  6. Sequencing of positive clones:定序從 phage library 釣出來的抗體,知道序列後就可以大量生產。
  7. Cloning into expression vector & purification: 把抗體的基因轉到 expression expression vector 後就可以大量表現和純化抗體。
打入抗原、讓牠產生抗體後,就可以採集牠的 lymphocytes,從中抽取 mRNA,再轉成 cDNA。之後用可以 amplify VHH 的 primers 和 PCR 去 amplify,再把這些 amplified 出來 VHH fragments subclone 到 phagemid。這些 amplified 出來的 VHH fragments 就是抗體的 DNA library。


Figure / Phagemid pMECS. VHH gene is fused to gIII gene of bacteriophage. (Vincke et al 2002)

噬菌體的構造


Phagemid 本身有包含 bacteriophage (噬菌體)的一些東西(e.g., f1 origin),所以除了會複製外,在 helper phage M13 的加入下 [註1],會在細菌裡 package 成一個個的 phage particles。把 VHH 的 DNA library subclone 進 phagemid 裡面是為了讓它和 phage 的 gene III 連結在一起 [註2],gene III 的蛋白質 product 是噬菌體的外層蛋白 g3p (g3 protein),也就是 coat protein [註3]。把 VHH 的 DNA library 和 gene III 連結在一起的話,那當 phagemid 在複製和 package 成 phage 的時候,就會和 g3p 一起表現在 phage 的表面(下圖 P3 的地方),這就是 phage display (噬菌體展示),把抗體展示在噬菌體表面。


Figure / Microbiology: Chapter 11 - Molecular Biology of Viruses (W. W. Norton)

註1:f1 和 M13 phage 都屬於 inovirus (ssDNA virus),M13 有十個 genes,gene I 到 gene X,它們的 protein products 即是 g1p 到 g10p。Phage display 裡常用的 helper phage 是 M13KO7,可以幫助噬菌體把 phagemid 包進 phage particle 裡面。

"M13KO7 is able to replicate in the absence of phagemid DNA. In the presence of a phagemid bearing a wild-type M13 or f1 origin, single-stranded phagemid is packaged preferentially and secreted into the culture medium.This allows easy production of single-stranded phagemid DNA for mutagenesis or sequencing." (摘自 NEB 的產品網頁

註2:下面提供的 protocol 裡用的 phagemid 是 pMECS,它帶有 f1 origin 和 gene III。
註3:如果對病毒還算熟悉的話,就是類似病毒的 capsid proteins 或是 envelope proteins。M13 的 g3p 是在的尾端,Expasy 的 ViralZone 有不錯的介紹:Inovirus - M13 phage

要讓噬菌體把 VHH 表現在它的表面,需要把 phagemid 轉入細菌中,這樣它才有辦法在細菌裡面 package 成一個個的 phage,並且在細菌中大量繁殖,而這些會表現 VHH 的 phage 就是 phage library。

怎麼釣出你要的奈米抗體?


因為一隻羊駝裡可以打入好幾種抗原,所以產生的抗體是對抗不同抗原的混合,因此上面做出來的 phage library 其實是各種抗體的混合。例如你在一隻駱駝裡打入 A, B, C 三個抗原,牠體內就會產生 anti-A, anti-B 和 anti-C 的奈米抗體,你的 phage library 也就會是這三種抗體的混合,如果你要從中挑出 anti-A 的 nanobodies,這時候就要做 biopanning 。

那要怎麼挑出來呢?

就是用 A 抗原去挑,把 A 固定在盤子上後,加入 phage library,這時候表現有 anti-A nanobodies 的 phage 就會 bind A,然後把其他不會 bind A 抗原的 phage 都洗掉,再把會 bind A 抗原的 phage 洗出來(elution),就是你的 anti-A phage library 惹。Anti-B 和 anti-C 的 phage 也可以用同樣方法挑出來,這個步驟就是 biopanning。


Figure / Scheme of phage display (T Schirrmann et al, Molecules 2011; doi: 10.3390/molecules16010412)

上圖中可以看到每個 phage 的尾巴都表現不同的抗體,這些抗體會和它可以辨識的抗原結合,然後其他的抗原的抗體或是 non-specific binding 會被洗掉,而可以和抗原結合的抗體則會被挑出來,在 helper phage 的幫助之下再度感染細菌,使這些帶有能夠辨識抗原的抗體的噬菌體 amplify。經過 amplification 的噬菌體再進入下一輪的 biopanning,把 binding 比較弱的和其他的 non-specific binding 再洗掉,這樣重複個兩三輪。

之後這些各別的 anti-A, anti-B 和 anti-C phage library 可以用 ELISA 的方法(i.e., phage ELISA)挑出 individual phage clones,例如找出 affinity 最高、最 specific,或是最 stable 的 nanobodies。挑出來的 phage clones 可以萃取出它們的 phagemid,定序之後就可以知道這些 nanobodies 的 DNA sequences。



詳細的 protocol 可以參考這篇:

C Vincke et al, Generation of Single Domain Antibody Fragments Derived from Camelids and Generation of Manifold Constructs. Antibody Engineering (2012)


延伸閱讀: 關於抗體和抗體藥的一些小知識