顯示具有 coronaviruses 標籤的文章。 顯示所有文章
顯示具有 coronaviruses 標籤的文章。 顯示所有文章

2020年8月8日 星期六

抗新冠病毒的 T cells 和抗感冒冠狀病毒的有 cross-reactivity

另外兩篇關於 T cells 對新冠病毒反應的研究,一篇是分析健康個體和新冠患者的 T cells,一篇是分析未感染者體內對新冠病毒有反應的 T cells,看看他們和普通感冒的冠狀病毒是否有 cross-reactivity。

刊在 Science 的那篇之前已經有一篇發表在 Cell,同樣是分析健康個體和 COVID-19 康復患者的血清,然後發現所有康復患者都有可辨識新冠病毒 Spike protein 的 CD4+ (helper) T cells,T cells 的反應程度和 IgG 量成正向相關,然後七成的康復患者有可對抗新冠病毒的 CD8+ (killer) T cells,而且反應強烈。康復患者除了帶有可辨識 Spike protein 的免疫細胞外,他們也帶有可辨識其他病毒蛋白的 T cells,像是 M protein 和 N protein。

相關文章:新冠病毒感染者體內 T 細胞的免疫反應

在之前的研究裡,他們同樣也分析了疫情前採集到的血清,同樣帶有可辨識新冠病毒的 T cells。

「他們檢測了於 2015-2018 年採樣到、沒有感染過新冠病毒的血液檢體,結果發現其中有 40% - 60% 含有可以辨識新冠病毒的 helper T cells,不過和康復患者不同的是他們的 T cells 反應雖然也是以 Spike 為主,但幾乎沒有對 N protein 或 M protein 有反應的 T cells,次主要的是 NSPs (non-structural proteins)。而之所以會有這些 T cells,可能是因為這些人之前感染過其他種類的冠狀病毒,cross-reactivity 使他們體內也有能辨識新冠病毒的 T cells。研究者們認為這是之前感染其他四種引起感冒症狀的冠狀病毒時產生的,因為這些血液檢體裡都有針對至少其中三種常見冠狀病毒的 T cells,血清檢測也顯示全部都有 HCoV-OC43 和 HCoV-NL43 Spike protein 的 IgG 抗體,表示大多數人都感染過常見的四種感冒冠狀病毒,而且至少感染過超過三種,而這也可能是為什麼大部分的人感染到新冠病毒後都只是輕症或無症狀。」

註:常見的四種感冒冠狀病毒為 NL63, 229E, OC43 和 HKU1。

這和後來瑞典,以及 Duke-NUS 的研究結果相似,未感染者的體內有可辨識 Spike 和 NSPs 的 T cells,但是極少有可辨識 N protein 的。那這些對新冠病毒有反應的 T cells 是哪裡來的呢?是因為感染過感冒冠狀病毒而得來的嗎?如果是的話,表示抗普通冠狀病毒的 T cells 和抗新冠病毒的 T cells 是有 cross-reactivity 的。他們後來發表在 Science 的這篇研究,就是分析未感染者體內的 T cells 可辨識的新冠病毒蛋白有哪些,另一篇德國研究團隊發表在 Nuture 也做了類似的分析。(德國的這篇之前已先發表在 medRxiv)

相關文章:輕症及無症狀患者帶有可對抗新冠病毒的 T cells

他們用 2018 年採樣到的血清去掃新冠病毒的蛋白片段,看對哪些片段有反應,大部分對病毒蛋白有反應的為 CD4+ T cells,少數為 CD8 T cells,和之前的研究結果一致。用來測試 T cells 反應的病毒片段分為兩組,一組是 Spike 的片段,一組是非 Spike 的片段,能被 T cells 辨識的片段大約是個一半。T cells 有反應的 Spike 那一半只有 11% 的目標是 RBD,而非 Spike 的那一半則大多是 NSPs,並且沒有對 M proteins 有反應的。相較之下,COVID-19 患者的 CD4+ T cells 則是對 M proteins 有強烈反應。

ok, 那這些疫情開始前一年的血清到底是為什麼有抗新冠病毒蛋白的 T cells?到底是不是因為和其他普通的感冒冠狀病毒有 cross-reactivity?他們發現這些血清裡的 T cells 都對常見的感冒冠狀病毒有反應,包括了 NL63, OC42 和 HKU1。另外,有 57% 的 cross-reactivity 在於那些蛋白片段有 >67% 的相似度。

相關文章:未感染過新冠病毒或 SARS 的人也有對抗新冠病毒的 T cells

下面這個 podcast 是對這篇研究的討論:Immune 34 - Coronavirus cross-reacting T cells



如果對免疫細胞實驗不了解的,podcast 裡解釋滿清楚的,下面幾點是我筆記到的:

1. 未見識過新冠病毒的 naive T cells 被新冠病毒的蛋白片段刺激後(1st boost),會轉變成 memory T cells,memory T cells 如果再度接受刺激(2nd boost),則會快速繁殖(proliferation),因此如果未感染者血清內的免疫細胞接受新冠病毒的蛋白片段刺激後便快速繁殖,表示他們體內已有可辨識新冠病毒的 T cells。

2. MHCI 和 MHCII 辨識的 peptide 長度不一樣,MHCI 主要表現在 CD8+ T cells,能夠抓到 peptide 長度是 8-10 個氨基酸;MHCII 表現在 CD4+ T cells,辨識的則是 13-18 個氨基酸長,因為他們用的 peptide 長度是 14-15 個氨基酸長,所以抓到的主要是 CD4+ T cells,這並不表示未感染者體內沒有 anti-Spike CD8+ T cells,而是這個實驗設計本身就是以釣出 CD4+ T cells 為主。

3. 因為人體內的 CD4+ T cells 有兩種:未見識過新冠病毒的 naive T cells 和見識過新冠病毒的 memory T cells,如果這些 2018 年採集的、未感染過新冠病毒的血清內有可辨識新冠病毒的 T cells 是因為和其他冠狀病毒的 cross-reactivity 而產生的,則需要確定它們是 memory T cells,怎麼確定?Naive T cells 和 memory T cells 表面的 markers 不一樣,所以可以用來辨識是哪種。

德國的那個則是比較了 COVID-19 患者的血清和健康個體的 T cells 對新冠病毒的反應,83% 的患者對 Spike 有反應,35% 的健康個體對 Spike 有反應(健康個體的 PCR 和血清檢驗為陰性)。雖然 COVID-19 患者和健康個體的 T cells 都可以辨識 Spike,但是有些差別。COVID-19 的 T cells 對 Spike S1 和 S2 domain 的反應程度差不多,但健康患者對 C-terminal 的 S2 反應比較強烈,而這個部分和其他常見的感冒冠狀病毒相似度很高,於是他們測了健康個體血清裡的抗體,發現所有健康個體都帶有常見的冠狀病毒,而且是四個全帶。這也可能是為什麼小朋友不易感染新冠病毒,因為學校不時有感冒冠狀病毒傳來傳去,大部分的小朋友應該都有抗冠狀病毒的免疫細胞惹。XD

相關文章:感染過冠狀病毒是否就免疫了呢?

「當時參與研究的志願者中,只有 11% 體內沒有抗體,顯示在當時的年代(1961-1977),這株冠狀病毒非常普及。當一年後再讓這些志願者感染這株病毒,看看抗體是否還有保護作用,發現抗體對同株的病毒有保護作用,但對相近病毒(也就是同樣是 alphacoronavirus,但是不同病毒株)只有部分的保護作用。後來有篇研究(Callow et al, 1990)顯示,如果體內抗體量不夠的話,229E 的康復患者可被二次感染。參與此研究的志願者在感染病毒一週後,IgG 開始上升,然後在十四天時達到高峰,一年後再測的時候抗體量仍然比感染前高,當再一次接受感染挑戰的時候,雖然約有一半的人被二次感染,但都沒有症狀。另外,第一次感染的時候,在前五到六天都測得到病毒,而二次感染時,只有前兩天測得到病毒,顯示病毒被清掉的很快。」



所以,到目前大概知道了什麼?

1. 未感染的健康個體雖然沒有抗新冠病毒的抗體,但是有可辨識新冠病毒的 T cells。COVID-19 患者的 T cells 幾乎對所有新冠病毒的蛋白都有反應,包括 Spike, M & N proteins,以及 NSPs,但未感染者則是以 Spike 和 NSPs 為主,對 N 沒什麼反應。

2. 有的原因很可能是因為感染過常見的感冒冠狀病毒,體內已有抗冠狀病毒的 T cells,由於有 cross-reactivity,因此這些 T cells 也可以辨識新冠病毒。

3. Cross-reactivity 的部分目前知道的可能有 Spike S2 和一些 NSPs,homology 可能要高於 67%,cross-reactivity 才會比較高。


未感染者體內雖然有可辨識新冠病毒的 CD4+ T cells,但並不表示它們有保護作用,因為他們是 helper T cells,並沒有消滅病毒或感染細胞的實質功能,所以我還滿想知道未感染者體內是否有 CD8+ T cells。



原論文:

J Mateus et al, Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science (2020)

J Braun et al, SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature (2020)










2020年6月27日 星期六

新冠肺炎患者體內的抗體有哪些

這篇研究分析了六十幾位 COVID-19 患者體內的抗體,想知道他們在感染後的產生時間和其 neutralizing 的功效。

摘要:

1. 用 ELISA 實驗的結果,發現用 Spike RBD (receptor-binding domain) 來測試患者體內抗體的 specificity 和 sensitivity 比較高。

2. 幾乎沒有患者在症狀出現後八天內有測到中和抗體(neutralizing antibodies),然後在第 21 天時有 91% 的患者測得到低量的 neutralizing antibodies,只有 73% 的患者體內有保護作用的中和抗體含量高於 1:80。

3. 大約有 32% 在症狀出現 21 天後,體內中和抗體的量依然很低,有的甚至沒有。

4. 大部分的人在出現症狀七天後,體內才測到較高的 IgG 和 IgM 抗體。

5. 症狀出現九天後,體內 IgG 抗體較為普遍,大多數感染過的人都有 IgG 抗體(94%),七成的患者有 IgM。

6. FDA 建議用血清來治療的 titre 是 1:160,目前只收症狀持續兩個禮拜的康復患者捐獻的血液用於治療。

7. RBD-binding 的抗體量和保護作用(neutralizing)呈現正相關:體內 anti-RBD 的抗體越多,保護作用越大。

8. 患者體內 IgM 的量也和體內的中和抗體(neutralizing antibodies)的量呈現正相關。

註:中和抗體為可結合病毒,進而抑制其感染細胞的抗體。

新冠病毒的哪個部分最能引起免疫反應呢?

知道這個有什麼用呢?可以用來做疫苗研發,如果我們知道病毒的哪個蛋白或蛋白的哪個片段可以引起有效的免疫反應,那就可以用來作為疫苗,比起打入整顆的病毒,只打入病毒的某個蛋白或某個蛋白片段會相對安全,有人想研發 DNA- 或 RNA-based 疫苗的部分原因也在此,因為它們只會在體內表現病毒的蛋白或蛋白片段,而不是整個病毒。

這個研究主要是用 Spike protein,他們把 Spike protein 依照目前所知的 domains 分成幾個片段試驗。

1. S-ectodomain (S1+S2), aa 16-1213
2. S1, aa 16-685
3. RBD, aa 319-541
4. S2, aa 686-1213

相關文章:近期和新冠病毒抗體相關的研究

他們把這些蛋白片段打入兔子體內,第一次和第一次施打隔了兩個禮拜,然後在打入後第八天取血清分析,看看哪個可以引起強烈的免疫反應。他們用 ELISA 測試血清裡的 IgG 和四種抗原的反應,結果顯示所有的血清都有可和 S-ecto 產生強烈反應的 IgG,而和其他三個抗原的反應則滿 specific,打入 S2 兔子的血清只對 S2 產生反應,對 S1 和 RBD 則沒反應。

因為 ELISA 分析的是 IgG binding,他們另外也用 SPR 分析其他 Ig binding,結果顯示在二次施打後,所有取得的血清裡,anti-Spike 的抗體中有 80% 是 IgG,10-15% 是 IgA,以及少量的 IgM。專一性的話呢, S-ecto 兔子的血清裡,大多數抗體都和 S-ecto 結合,再來是和 S1,最後是 RBD 和 S2,大概是 S-ecto 的三分之一。S1 兔子血清裡和 S-ecto, S1 以及 RBD 結合的抗體都差不多多,沒有和 S2 結合的。RBD 兔子血清裡的抗體一樣是和 S-ecto, S1 以及 RBD 結合的量都差不多,但是量都是 S1 兔子的三倍,而且這些抗體對抗原的 affinity 是其他兔子抗體的五倍。

再來就是看這些抗體的保護力了,他們用 RBD-hACE2 binding competition SPR assay 和 neutralization 測試抗體抑制病毒的功效。因為新冠病毒進入細胞靠的是 RBD 和宿主細胞 hACE2 的結合,competition SPR assay 便是測試抗體阻斷 RBD 和 hACE2 的功效如何,結果顯示 S1 兔子和 RBD 兔子的血清阻斷的效能最好,分別為 84% 和 94%,而 S1+S2 的只有 44%。那這些抗體是否可以阻止細胞被病毒感染呢?實驗結果顯示 RBD 兔子的血清抑制病毒感染的效果最好,再來是 S1 兔子的血清,最後才是 S1+S2 兔子的血清。

結論:用病毒 Spike protein RBD 產生出來的抗體對抗原的 affinity 最高,最能有效阻斷 RBD-hACEII binding,抑制病毒感染細胞的效果也最好。



Publication:

S Ravichandran et al, Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Science Translational Medicine (2020)










2020年5月23日 星期六

新冠病毒感染者體內 T 細胞的免疫反應

人類體內對抗病菌的免疫機制除了透過抗體外,還有各種免疫細胞,雖然目前關於新冠病毒的研究大多著重在抗體,但免疫 T cells 也扮演著清除病毒的重要角色。康復者到底會不會免於二次感染呢?這可能和感染後產生多少抗體、抗體維持多久,和免疫細胞反應的強度有關,感染後要能產生有效的免疫反應,才表示疫苗的研發是有意義的。最近有篇研究是關於 T cells,發現有些未受 SARS-CoV-2 感染者的體內有對抗此病毒的 T cells,很可能是因為之前感染過其他冠狀病毒產生的。

關於免疫系統裡 T cells 和 B cells 的功能,我很喜歡下面這張圖,覺得畫得很清楚。B cells 是製造抗體的,T cells 是殺死受感染的細胞,但他們兩個都要先從 APC (antigen presenting cells) 那裡取得病毒的資料,才能製造出可以辨識病毒的抗體,或是受到感染的細胞。(就像你想讓狗去找嫌疑犯,要先讓牠聞一下嫌疑犯身上的味道,然後再讓牠去搜尋一樣。)


Figure / Development of immunity (Nature News 2020; doi: 10.1038/d41586-020-01221-y)

La Jolla Institute 的研究團隊想知道病毒的哪個部分可以引發強烈的 T 細胞反應,因為這個病毒蛋白的片段可能可以用來做疫苗。他們先預測了一些可能會引起強烈 T 細胞反應的病毒蛋白片段(peptides),其中一組是 spike protein 的片段,另一組是除了 spike proteins 之外所有 SARS-CoV-2 蛋白的片段,每個約十個氨基酸長,然後把這些片段測試在 20 位新冠病毒康復患者的血清上。這二十位康復患者都算是輕症的,有症狀但是不需要住院,血清是在症狀出現後 20 - 35 天後,完全沒症狀後採集的,有先用 ELISA 檢測過,確定他們的血清內有抗 Spike protein RBD 的抗體。他們發現所有的康復患者都有可以辨識新冠病毒 Spike protein 的 helper (CD4+) T cells,helper T cells 反應的程度和 anti-Spike IgG 量正向相關,七成的患者有針對新冠病毒的 killer (CD8+) T cells,而且 T cells 的反應非常強烈。目前很多人對患者是否對新冠病毒有免疫力有疑慮,認為病毒不見得會引起免疫反應,加上有報導說有患者再次感染,不過這個研究顯示,大多數的患者的免疫系統是對新冠病毒有反應的。

註:helper T cells 負責幫助 B cells 產生抗體,和抗體 IgG 和 IgA 量有關;killer T cells (又稱 cytotoxic T cells, CTLs) 負責清除病毒。

除此之外,這些血清內也有可以辨識新冠病毒其他蛋白的 T cells,包括 M protein 和 N protein。所有患者的血清都有針對非 Spike protein 的 helper T cells,比例上大概是 50% 的 T cells 是針對 Spike protein,50% 是針對 Spike protein 以外的病毒蛋白。

由以上結果看,我們也許不用對疫苗研發太過悲觀,新冠病毒是可以引起免疫反應的,接下來要知道的是這個免疫反應是否能使人體對病毒產生保護作用,如果可以的話,研發出成功的疫苗是有希望的。

不過,這篇研究裡的患者是有症狀的,那無症狀患者是否也有可以辨識新冠病毒的 T cells,並能產生強烈的免疫反應呢?這篇研究裡沒有檢測無症狀患者的 T cells responses,但是檢測了未受感染者的 T cell responses。

他們檢測了於 2015-2018 年採樣到、沒有感染過新冠病毒的血液檢體,結果發現其中有 40% - 60% 含有可以辨識新冠病毒的 helper T cells,不過和康復患者不同的是他們的 T cells 反應雖然也是以 Spike 為主,但幾乎沒有對 N protein 或 M protein 有反應的 T cells,次主要的是 NSPs (non-structural proteins)。而之所以會有這些 T cells,可能是因為這些人之前感染過其他種類的冠狀病毒,cross-reactivity 使他們體內也有能辨識新冠病毒的 T cells。研究者們認為這是之前感染其他四種引起感冒症狀的冠狀病毒時產生的,因為這些血液檢體裡都有針對至少其中三種常見冠狀病毒的 T cells,血清檢測也顯示全部都有 HCoV-OC43 和 HCoV-NL43 Spike protein 的 IgG 抗體,表示大多數人都感染過常見的四種感冒冠狀病毒,而且至少感染過超過三種,而這也可能是為什麼大部分的人感染到新冠病毒後都只是輕症或無症狀。

註:四種常見的冠狀病毒為 HCoV-OC43, HCoV-HKU1, HCoV-NL63 和 HCoV-229E ,前兩者為 betacoronaviruses,後兩者為 alphacoronaviruses。

相關文章:感染過冠狀病毒是否就免疫了呢?

另外,上個月有篇發表在 medRxiv 也有類似的結果,他們除了從新冠病毒康復病患的體內發現有能夠辨認 Spike protein 的 helper T cells,也從沒感染過的個體裡發現可以辨識 SARS-CoV-2 的 helper T cells。



Articles:

Science / T cells found in COVID-19 patients ‘bode well’ for long-term immunity (May 2020)

TN / Analysis of SARS-CoV-2 Immune Response Bodes Well for Vaccine Development (May 2020)


Papers:

A Grifoni et al, Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell (2020)

J Braun et al, Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. medRxiv (2020)










2020年5月17日 星期日

感染過冠狀病毒是否就免疫了呢?

目前市面上有很多血清檢測的 kits,而我們最想用血清檢測回答的問題有:

1. 康復患者血清內的抗體量是多少?
2. 多少才有保護作用,使人不被二次感染?(這也算是疫苗效用的一個指標,如果抗體無法避免二次感染,那疫苗 .....?)
3. 無症狀患者、輕症患者和重症患者體內的抗體量是都一樣的嗎?是否所有感染者都能產生大量的抗體,使其不被二次感染?還是重症患者的抗體比較多?
4. 體內抗體能維持多久,有效避免二次感染的抗體量會維持多久?

上個月刊在 medRxiv 的這篇研[1]究分析了目前關於冠狀病毒的相關研究,想要試著回答上面的問題,但因為新冠病毒是這幾個月的事,所以 SARS, MERS 和其他造成感冒的冠狀病毒的研究比較多。

註:常見的、會引起感冒症狀的人類冠狀病毒有 229E (alphacoronavirus), NL63 (alphacoronavirus), OC43 (betacoronavirus), HKU1 (betacoronavirus)。

1. 造成感冒的冠狀病毒,例如 229E,康復患者體內的抗體大概可以維持一年使人不被二次感染,或是再次感染的症狀也是很輕微。

2. SARS 康復患者體內的抗體在感染後第四個月達到高峰,而且則能維持到三年左右,使其不被二次感染。(不過研究裡檢測的最後時間點是感染後第三年,所以只知道至少三年,之後就不知道了。)

3. MERS 輕症換者可在症狀發生後的半年和一年的時間點測到 IgG,重症患者的時間點也差不多。

4. 其中一篇研究[2]裡是測試冠狀病毒 229E 的康復患者是否會二次感染。當時參與研究的志願者中,只有 11% 體內沒有抗體,顯示在當時的年代(1961-1977),這株冠狀病毒非常普及。當一年後再讓這些志願者感染這株病毒,看看抗體是否還有保護作用,發現抗體對同株的病毒有保護作用,但對相近病毒(也就是同樣是 alphacoronavirus,但是不同病毒株)只有部分的保護作用。後來有篇研究[3]顯示,如果體內抗體量不夠的話,229E 的康復患者可被二次感染。參與此研究的志願者在感染病毒一週後,IgG 開始上升,然後在十四天時達到高峰,一年後再測的時候抗體量仍然比感染前高,當再一次接受感染挑戰的時候,雖然約有一半的人被二次感染,但都沒有症狀。另外,第一次感染的時候,在前五到六天都測得到病毒,而二次感染時,只有前兩天測得到病毒,顯示病毒被清掉的很快。(不知道這是不是這次有很多無症狀患者的原因,如果血清檢測可以順便檢驗其他的 betacoronaviruses 的話可能可以知道。)

5. 有些冠狀病毒抗體有 cross-reactivity,像是 229E 的抗體可以使患者約一年不被同種的冠狀感染,例如同是 alphacoronavirus 的 NL63。


Figure / Quantitative and binary readouts in serology assays. (Krammer & Simon, Science 2020)

雖說目前有很多血清抗體檢測,但是要知道新冠病毒的康復患者是否能夠避免二次感染,需要可以測量體內抗體量的檢測,而這需要做 ELISA,比較耗時也比較耗人力,需要在實驗室執行。LFA 之類的快篩只能知道有或沒有,而且需要夠高的 sensitivity 和 specificity,才不會有太多的 false positive 或 false negative,主要是用來了解病毒感染的盛行率(sero-pervalence)。



Article:

Science / Serology assays to manage COVID-19 (May 2020)


References:

1. AT Huang et al, A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv (2020)

2. SE Reed, The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: evidence of heterogeneity among 229E-related strains. J Med Virology (1984)

3. KA Callow et al, The time course of the immune response to experimental coronavirus infection of man. Epidemiology & Infection (1990)










2020年3月7日 星期六

新冠病毒(SARS-CoV-2)的檢測 -- qPCR 和抗體

目前的檢測都是以用 qPCR 檢測病患體內是否有武漢病毒的 RNA,這個方法的問題是耗時耗力,尤其是 RNA extraction 相對來講比 DNA 困難不少,是個瓶頸。另外,復原的患者裡沒有病毒後就測不到 RNA,只能針對目前正被感染的患者,而非康復後的患者,如果患者康復了,那感染的源頭或是中介者就斷了。

目前用 qPCR 檢測的目標基因是 N gene, E gene 和 RdRp gene,它們轉譯後的蛋白為 nucleoprotein (N protein), envelope protein (E protein) 和 RdRp (RNA-dependent RNA polymerase)。

關於這個病毒的 background info 請參考這篇:關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊


Figure / SARS genome (ViralZone 2020)

之前 BC CDC (BC 省疾管局)內部的 seminar 裡有提到他們檢測的流程為先用 qPCR 檢測是否有 RdRP 和 E gene (~24hrs),再檢測是否有 N gene (2hrs),然後送定序 RdRP (8-16 hrs),都顯示 positive 後最後送 National Microbiology Lab (NML) 確認(24-48hrs)。後來我在 CDC 工作的朋友說,現在已經不用送 NML,BC CDC 檢測為陽性就直接公佈了,所以 24 小時內就可以知道結果。(註:NML 為加拿大唯一的 P4 Lab,位於 Winnipeg, Manitoba。)


Figure / The 2019-nCoV Novel Coronavirus – what we know and what we’re finding out (BC CDC)

除了檢測病患的病毒 RNA,另一個方法就是測體內的抗體,感染病患在免疫系統正常的情況下,身體會製造對抗病毒的抗體,因此即使患者復原了,也可以透過檢測體內的抗體得知其是否曾經感染過病毒,例如浙江台商,另外用抗體檢測也比較省時省力。

新加坡大學 NUS 和美國 Duke University 合作抗體檢測,並在這週二發表了他們的成果。新加坡在一月時發生了兩起教會的群聚感染,一月 29 號的時候有位年輕男士感到身體不適,但找不到感源。另一個教會則是在一月 19 號的時候有位來自武漢的訪者,後來往回追接觸史的時候發現,年輕男士在一月 25 號的農曆年慶祝活動裡,同時參加活動的一對夫妻曾經接觸過那位武漢訪者。那對夫妻在一月 25 的時候出現症狀而去醫院,但因為症狀輕微並沒被診斷為武漢肺炎。發現了年輕男士和這對夫妻的連結後,這對夫妻在二月 18 號送去 CDC 檢測,不過那時那對夫妻已經康復了,檢測人員認為可能測不到病毒的 RNA,於是除了用 qPCR 檢測外,同時也做了抗體測試。沒想到,先生的 RNA 檢測為陽性,於是隔天被送醫隔離,而太太的檢測則是陰性,不過數日後的抗體檢測結果顯示夫妻兩人皆為陽性,表示兩人體內皆有武漢病毒的抗體,太太也曾經感染過病毒。

他們從康復患者的血液檢體裡發現到辨識病毒 S 蛋白(spike protein)的抗體,而這些抗體在實驗室中顯示可以阻止病毒殺死細胞。同時,他們合成的病毒蛋白也可以被患者血裡的抗體偵測到。不過,用抗體檢測需要注意它的 specificity,因為武漢病毒和 SARS 的蛋白很像,可能會出現 cross-reactivity 的問題(也就是抗體同時可以檢測到 SARS 和武漢病毒的蛋白),所以必須要確定檢測的抗體只會辨識武漢病毒的蛋白,而新加坡和杜克大學研發的抗體測試可以分辨兩個病毒的蛋白,也就是只會對武漢病毒的蛋白有反應。

看到這裡可能會覺得很熟悉,沒錯,中研院之前也公佈過他們可以在浙江台商的血裡測到武漢病毒的蛋白,不過他們測的是 N 蛋白(nucleoprotein)。


【 名字改來改去,武漢病毒到底叫什麼?】

病毒和其引起的疾病命名方式分為三個等級:(ICTV - Naming the 2019 Coronavirus)

1. 疾病名(disease name):由 WHO 病名,例如這次的武漢肺炎被 WHO 命名為 COVID-19 (Coronavirus Disease 2019)

2. 病毒名(virus):由病毒學家命名,例如這次的武漢病毒是由 ICTV 裡的冠狀病毒學家命名為 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)。

3. 病毒分類(species):由 ICTV (International Committee on Taxonomy of Viruses) 將病毒分類,跟動物的界門綱目科屬種一樣,病毒也由大至小分成 family (名字尾巴是 -dae), subfamily (名字尾巴是 -nae), genus (名字尾巴是 -virus) 和 species (可能前面加個宿主名,例如 canine, porcine 等等的,或是後面加個 type 1, type 2 之類的),另如這次的冠狀病毒就是 Coronaviridae (family) - Orthocoronavirinae (subfamily) -Betacoronavirus (genus) - Severe acute respiratory syndrome-related coronavirus (species)。

ICTV 發表的命名武漢病毒的 papers:

AE Gorbalenya et al, Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. bioRxiv (2020)

Coronaviridae Study Group of the ICTV, The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology (2020)


Article:

Science / Singapore claims first use of antibody test to track coronavirus infections (Feb 2020)










2020年3月6日 星期五

關於武漢病毒(SARS-CoV-2) Cryo-EM 那篇論文的閒聊

應該有人已經看過這篇論文了,是武漢病毒(SARS-CoV-2)的 cryo-EM,沒想到這麼快就做出來了。

簡單介紹一下這個病毒的 background:

1. enveloped, (+)RNA viruses:病毒的特點就是自帶基因和蛋白很少,都是用宿主細胞的,越小的病毒越是如此。(就像是平常住外面、兩三個禮拜回家一次的人,回去不用帶太多東西,因為可以用家裡的,可能只要帶牙刷、手機和錢包回去就好惹。XD)

2. 大部分病毒的主要自帶基因分為兩種:structural 和 non-structural (NS)。Structural 是組成病毒實體的蛋白,例如 envelope proteins 和 capsid proteins。Non-structural 則是負責病毒複製,例如 transcription factors (TFs) 或是 RNA polymerase (RdRp)。武漢病毒主要的自帶基因有 spike protein (S protein, 屬於 envelope protein), nucleoprotein (N protein), RNA polymerase。同一個家族的病毒通常自帶的基因都差不多,例如武漢病毒和 SARS 都自帶 spike protein 和 N protein。


Figure / Betacoronavirus virion (ViralZone 2020)

3. 武漢病毒和 SARS 的 spike protein 相似度為 86%,和蝙蝠冠狀病毒 RaTG13 的相似度則高達 98%,主要的差異是武漢病毒有一段 "RRAR" furin recognition site,而蝙蝠 RaTG13 和 SARS 的 protease cleavage site 則是只有一個 arginine (R),在流感病毒裡,其 hemagglutinin protein 帶有 furin binding site 的通常是毒性比較強的病毒株。除此之外,武漢病毒和 RaTG13 S protein 的 RBD 有十七個氨基酸不同。

4. 跟 SARS-CoV 屬於同樣的 species,進入宿主細胞的機制也差不多,是經由它表面的 spike protein 結合宿主細胞的 ACE2 (angiotensin-converting enzyme 2)。

5. Spike protein 是個 glycoprotein,也就是說它會被醣化(glycosylated)。通常 envelope viruses 的表面蛋白(envelope protein)是 glycoprotein。S protein 的結構主要分為幾個 domains:SS (signal sequence), NTD (N-terminal domain), RBD (receptor-binding domain), SD1/2 (subdomain 1, 2), TM (transmembrane domain) 和 CT (C-terminal tail) 等等其他一些小的 domains。三個 S proteins 會結合在一起形成一個 trimer,然後和 ACE2 接合以進入宿主細胞,負責和 ACE2 結合的為 RBD。

我朋友是做 protein binding 研究的,看到這篇的重點是 SARS 和 SARS-CoV-2 的 spike protein 結構非常像,但是抗體竟然沒有 cross reactivity,幾個已發表的 SARS-CoV RBD-specific 抗體都對 SARS-CoV-2 沒反應。而我純化蛋白做太多了,看到的重點都是怎麼純化這個蛋白。XD

1. 竟然可以從 293 cells 純化到 0.5mg/L 的蛋白。
2. 純化它的 ectodomain (1-1208)就夠研究和 ACE2 的 binding。
3. 純化它的 ectodomain 只要過兩個 columns:affinity + SEC,而且在 SEC 是只有一個 670kDa 的 single peak。


* RaTG13 spike protein: QHR63300.2
* SARS-CoV spike protein: NP_828851.1
* SARS-CoV-2 spike protein: QHD43416.1



原論文:

D Wrapp et al, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (2020)










2020年2月7日 星期五

關於謠言 | 武漢病毒的源頭到底是哪裡?

之前盲眼的尼安德塔石器匠已經寫過了,這篇只是我自己的整理。


Figure / Coronavirus virion (Scientific Animation)

1.
美國 University of North Carolina 於 2015 年十一月,發表了一篇關於 SARS 的研究在 Nature Medicine,說明 SARS 是依靠它的表面蛋白 SHC014 從動物身上傳染到人類身上的。SARS 和 MERS 原本是寄生在其他動物身上的,是怎麼跨物種傳染到人類身上呢?研究顯示中國蝙蝠帶的類 SARS 病毒 RsSHC014-CoV 和人類 SARS 病毒的 SCH014 序列很相似,但是有 15 個氨基酸不同,而這些不同決定 SCH014 是否能和人類的血管酵素(angiotensin converting enzyme II, ACE2)結合。他們把可以感染老鼠的 SARS-CoV 病毒改成可以表現蝙蝠冠狀病毒的表面蛋白 SHC014,結果顯示這個基改冠狀病毒可以和人類的血管收縮轉化酶(angiotensin converting enzyme II, ACE2)結合,並且可以有效的在人類呼吸道細胞中複製繁殖,顯示蝙蝠冠狀病毒很可能透過 SHC014 突變而傳染到人類身上。這篇研究出來以後引發許多討論,認為這類研究太危險,要是基改後的病毒不小心外洩可能會造成很大的問題。NIH 其實在 2013 年就決定停止給這類危險病毒的相關研究 funding,會給這個研究 funding 是因為可以幫助科學家們了解 SARS 的傳染機制,同時這個研究也在法令公佈之前就開始了。

2.
2017 年的時候,Nature 發了一篇關於中國蓋 BSL-4 實驗室的文章,最近被拿出來討論,因為網傳說這次的武漢病毒和其 BSL-4 lab 有關。中國在 2003 年的時候決定在武漢蓋第一個 BSL-4 級的實驗室,但因為種種因素,直到 2014 年年底才完成。實驗室有分四個等級,普通大學裡的只到 BSL-2,如果研究有用到癌症細胞或是人類病毒之類的,需要 BSL-2,通常做研究的都會用到,會有一個專屬的負壓細胞培養小房間。BSL-4 是最高等級,加拿大只有一個,就是 Winnepeg 的那個 National Microbiology Laboratory,會用到這個等級實驗室的有伊波拉病毒和 SARS。

武漢實驗室蓋完開始用之後,引來了一些質疑,像是中國是否可以 use it properly,尤其在他們官僚文化嚴重的情況下,是否會遵守只用規則。除此之外,中國還在哈爾濱、北京和昆明還再蓋共三個 BSL-4 lab,這也讓人質疑,中國是否需要那麼多個 BSL-4 lab,尤其是北京的 BSL-4 lab 曾外洩 SARS 多次。

3.
最近病毒分析結果認為和武漢病毒最相近的是雲南蝙蝠帶有的 RaTG13,而這株病毒為武漢病毒所擁有,上週武漢病毒所的石正麗發表在 Nature 的研究顯示武漢病毒和 RaTG12 的相似度為 96.2%,和 SARS 則只有 79.5%。另外,Nature Medicine 那篇基改 SARS 的研究石正麗也有參與,於是謠言四起,2017 年的那篇文章[2]因此最近在前面加了這段表示謠言未經證實,科學家們認為來源為那個市場:"Editors’ note, January 2020: Many stories have promoted an unverified theory that the Wuhan lab discussed in this article played a role in the coronavirus outbreak that began in December 2019. Nature knows of no evidence that this is true; scientists believe the most likely source of the coronavirus to be an animal market."



News:

The Scientist / Lab-Made Coronavirus Triggers Debate (2015)

Nature / Inside the Chinese lab poised to study world's most dangerous pathogens

Science / Mining coronavirus genomes for clues to the outbreak’s origins (2020)


Publication:

VD Menachery et al, A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine (2015)

P Zhou et al, A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature (2020)