2020年12月30日 星期三

Ketamine 抗憂鬱的可能機制

抗憂鬱藥(antidepressant)一直以來有個缺點,就是藥效作用很慢,至少要一個禮拜以上才會產生效果,而且有約 30% 的患者對常用的抗憂鬱藥,也就是 SSRIs (selective serotonin reuptake inhibitors) 沒反應,因此近期對於 SSRIs 到底有沒有用起了很多問號和不少爭議。

相關文章:抗憂鬱藥真的沒效嗎?

相較於 SSRIs,ketamine (K他命)的作用很快,因此近年來有不少研究是關於怎麼用 ketamine 來治療重度憂鬱症(major depression disorder, MDD)。

Ketamine 在 1960 年代便已出現,最初是當鎮定劑使用,現在則是用來麻醉動物。由於 SSRIs 作用很慢而且需要持續施藥,病人需要幾週至上月才會對 SSRIs 產生反應,但重度憂鬱症的人可能等不到藥物反應就自殺了。相對的,Ketamine 的作用則很快,只要幾個小時就能改善心情,而且一劑藥就可以維持一週,不過它的副作用就是會上癮和產生 dissociative effect (感覺和周遭環境和自身脫離),所以目前很多用 ketamine 做研究,希望能找出它的作用機制,然後研發出和它作用相同但沒有副作用的藥物,只是到目前都還無法確定 ketamine 是如何作用的。

相關文章:K他命在治療憂鬱症上的突破

目前認為 ketamine 的機制是抑制神經傳導物質接受器 NMDAR (antagonist),之前有篇研究引起很大的關注,那篇研究發現 ketamine 的抗憂鬱效果不在於它本身,而是它的其中一個代謝物 -- (2S,6S;2R,6R)-HNK,而這個代謝物是作用在另一個神經傳導接受器 AMPAR 上面[註],最重要的是它沒有上癮的副作用。之前有研究顯示,在老鼠實驗中,(2R,6R)-HNK 的抗憂鬱作用需要激活 mTORC1 kinase,而 mTORC1 signalling pathway 控制著許多神經細胞內的活動,例如脂肪生成、葡萄糖代謝、mRNA 轉譯和蛋白質生成。

註:NMDAR 和 AMPAR 皆是神經元細胞(neurons)上的受體,和海馬迴的記憶功能有關。


Figure / mTORC1 signalling pathway. (A) When mTORC1 is inactive, 4E-BP binds to eIF4E and subsequently inhibits mRNA translation. (B) When mTORC1 is active, it phosphorylates 4E-BP. Phosphorylated 4E-BP dissociates from eIF4E and allows formation of eIF4F complex, which subsequently recruits ribosomes for mRNA translation and protein synthesis.

這期的 Nature 有篇研究是關於 ketamine 作用的機制,加拿大的研究團隊發現 eIFs (eukaryotic initiation factors) 中的 4E-BPs (4E-binding proteins) 在其中扮演了重要的角色,主要是影響 mTORC1 控制的蛋白質生成。哺乳類動物有三個 4E-BPs 基因,在老鼠腦部,4E-BP1 和 4E-BP2 表現在其 PFC (prefrontal cortex) 和海馬迴(hippocampus, HPC),海馬迴的神經元細胞只表現 4E-BP2,而在 PFC,4E-BP1 和 4E-BP2 接表現在 excitatory (CAMK2α+) 和 inhibitory (GAD67+, GABAergic) neurons。

當老鼠神經元細胞裡的 4E-BPs 基因被拿掉後,ketamine 無法在腦部細胞發揮抗憂鬱效用,因為 ketamine 的抗憂鬱作用在 excitatory neurons 裡是透過 4E-BP2,在 inhibitory neurons 裡是透過 4E-BP1 和 4E-BP2。憂鬱症的老鼠實驗是把老鼠放進沒有落腳處的水裡逼迫牠們游泳(forced swim test, FST),然後觀察他們的求生意志,有憂鬱症狀況的老鼠會較快放棄游泳求生,呈現不動的狀態(immobility)。

Forced Swim Test (FST): "The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured." (A Can et al, J Vis Exp 2012)


Figure / Mouse forced swim test (Danish 3R-Center)

正常的老鼠,在打了 ketamine 後放進水裡一個小時後,不動的比例是 67.9%。他們也試了 (2R,6R)-HNK,效果和 ketamine 差不多,不動的比例是 61.1%。另外,ketamine 的效力可以維持多天,老鼠在打了高劑量的 ketamine 六天後,在游泳實驗裡,仍可以降低 80.6% 的不動比例。失去 4E-BP1 或 4E-BP2 基因的老鼠,在游泳實驗裡,即便打了高劑量的 ketamine 或 (2R,6R)-HNK,不動的比例也沒有降低,跟只打生理食鹽水的比例一樣,而其海馬迴裡可被 ketamine 激發的 excitatory neuromission 也被抑制。

他們也做 cell-specific deletion,也就是只有特定的神經細胞裡的 4E-BPs 基因被刪除,他們試驗了兩種細胞:excitatory neurons 和 inhibitory neurons。當 excitatory neurons 的 4E-BPs 基因被刪除後,ketamine 和其代謝物 (2R,6R)-HNK 便失去了抗憂鬱的效用,顯示在 ketamine 的作用中4E-BPs 是必要的。有趣的是當 inhibitory neurons 裡的 4E-BP2 基因被刪除的話,也會降低游泳實驗時老鼠不動的比例。他們也發現,當老鼠的 inhibitory neurons 缺少 4E-BP2 的時候,他們的 GABAergic synaptic transmission 增加了。而事實上 GABAergic neurons 也被認為和憂鬱症有關,神經傳導物質 GABA (gamma aminobutyric scid)有鎮定的效用。

【 題外話 】之前 UBC 的實驗室就有位博士生是研究用 ketamine 治療 MDD,用的老鼠株是 Wister Kyoto (WKY),每次他把 Kyoto 唸成 ki-o-to 的時候都很想糾正他是 kyo-to,不是 ki-o-to。XD



Articles:

TN / How Does Ketamine Combat Depression?


Paper:

A Aguilar-Valles et al, Antidepressant actions of ketamine engage cell-specific translation via eIF4E. Nature (2020)











2020年12月28日 星期一

萬用流感疫苗的第一期臨床試驗

目前大家大概都知道的,流感疫苗每年都要施打,因為流感病毒突變的很快,每年都需要預測明年可能的突變,然後製作疫苗,但因為是預測,所以疫苗的效力不穩定,預測準的話就效力比較高,不準就效力較低。

流感病毒的表面有兩個醣蛋白(glycoprotein):hemagglutinins (HA) 和 neuraminidase (NA)。流感病毒株的 H, N -- 例如西班牙流感 H1N1,便是指這兩個蛋白。流感病毒依其 H, N 分成三種:Influenza A, B, C。其中 Influenza A 又分為兩組:group 1 包括有 H1, H2, H5, H6, H8, H9, H11-13, H16,group 2 裡有 H3, H4, H7, H10, H14 和 H15。HA 蛋白是流感進入細胞的媒介,和細胞表面的 sialic acid 結合後得以進入細胞,因此目前的疫苗主要是針對 HA 做預測,目的是希望人體能夠產生對抗 HA 的抗體。


Figure / Influenza virus infection (US CDC)

HA 蛋白分為兩個部分,上面的 head domain 是基因突變較頻繁的部分,頂端是 receptor binding site,也就是 antigenic site,和細胞表面 sialic acid 結合的部位,是目前疫苗針對的標靶,但因為變化頻繁,針對 HA head 的疫苗便有 specificity,疫苗需要混合很多不同病毒株涵蓋率才會高。HA 下面的部分是 stalk domain,相較起來突變較不頻繁。也就是說,如果疫苗是針對下面的 stalk domain 的話,就可以一次針對多個病毒株,也許就不用每年都更新疫苗了。

相關文章:萬用流感疫苗的可能性


Figure / Influenza HA structure (KVR et al, JCI 2018)

不過,如果要針對 stalk domain 製作疫苗,有幾點需要考慮:

1. 因為它不是 antigenic site,不確定針對此部位的抗體是否能抑制流感病毒進入細胞?
2. 大多數人體內因為長期接受流感病毒或疫苗,體內已有針對 HA head domain 的免疫反應,所以就算打了針對 stalk domain 的疫苗,體內針對 head domain 的免疫反應會迅速作用,可能會因此讓針對 stalk domain 的疫苗無法發揮作用。
3. 那如果疫苗只有 stalk domain 而不包含 head domain 的話呢?目前為此,一些研究團隊實驗的結果是 head domain 本身很不穩定。

Mount Sinai 醫學院的 Krammer 和其同事想到的辦法是做成 HA chimeras (cHAs),就是把 H1 strain 的 stalk domain 和禽流感 H5 及 H8 的 head domain 連在一起,變成一個人體沒接觸過、新的抗原,這樣就不會引起原本針對 HA head domain 的免疫反應,使人體可以產生對抗 stalk domain 的免疫反應。

他們之前的老鼠實驗顯示,當多次把不同的 cHAs (不同的 head,但都是 H1 的 stalk)打入老鼠體內,可以老鼠產生抗 stalk 的抗體。之後他們用 H1N1 去感染被施打 cHA 疫苗的老鼠,這些老鼠的存活率和體重都比控制組(只打 BSA)的老鼠好。cHA 疫苗用的是 H1 stalk,可以保護老鼠於 H1N1 在預期之內,重要的是產生的 anti-stalk 抗體是否能夠對抗其他流感病毒株的感染。於是,他們用 H5N1 和 H6N1 去感染之打了 cHA 疫苗的老鼠,同樣顯示老鼠體內的 anti-stalk 抗體具有 cross-reactivity,對老鼠有保護作用。不過,當他們用 group 2 的 H3N2 去試驗,卻沒有明顯的保護作用,顯示帶有 H1 stalk 的 cHA 產生的抗體侷限在同樣是 group 1 的流感病毒株。

chimeric HA (cHA) 疫苗的臨床試驗目前還在第一期臨床安全測試,試驗分為兩組,接受疫苗的為 66 位十八到 39 歲的健康個體,其中有十五人接受的是 placebo。在比較兩組在施打疫苗後的抗體後。結果顯示接受 HA chimeras 的那組產生了大量的 anti-stalk 抗體。他們用 ELISA 測試產生的抗體 cross-reactivity,結果顯示抗體對 group 1 裡的 H2, H8, H9 和 H18 皆有反應,但是對 group 2 裡的 H3 沒反應,跟之前老鼠實驗的結果一致。之後,研究人員把這些人的血清打到老鼠體內,再給老鼠感染流感病毒,觀察牠們的免疫反應,結果顯示接受施打疫苗後的血清對老鼠有保護作用,但抑制病毒的效果沒預期的好。

總之,這個疫苗在第一階段的臨床安全試驗裡顯示可以使免疫系統產生大量抗體,並且可以辨識主要幾個 group 1 裡的病毒株,不過效果如何還需之後二三期的臨床試驗才知道。


Articles:

US CDC / Understanding Influenza (Flu) Infection: An Influenza Virus Binds to a Respiratory Tract Cell

Science / Innovative universal flu vaccine shows promise in first clinical test (Dec 2020)


Papers:
R Nachbagauer et al, A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nature Medicine (2020)

KV Reeth, The post-2009 influenza pandemic era: time to revisit antibody immunodominance. JCI (2018)

R Nachbagauer et al, A chimeric haemagglutinin-based influenza split virion vaccine adjuvanted with AS03 induces protective stalk-reactive antibodies in mice. Nature Vaccines (2016)

F Krammer et al, Chimeric Hemagglutinin Influenza Virus Vaccine Constructs Elicit Broadly Protective Stalk-Specific Antibodies. JVI (2013)










2020年11月20日 星期五

用基改益生菌治療 C. difficle 感染

之前有介紹過,量產抗體有幾個選項,可以用動物細胞,可以用大腸桿菌,也可以用酵母,另外還有一種是雞蛋(IgY)。

相關文章:關於抗體和抗體藥的一些小知識

這篇研究用的是酵母菌,把基改後可以生產抗體的酵母菌吃下去,讓它在體內製造抗體來對抗 Clostridioides difficile (困難梭狀桿菌)感染。困難梭狀桿菌感染(Clostridioides difficile infection, CDI)通常發生在老年人,尤其是有在服用治療其他感染的抗生素的,抗生素會殺掉很多細菌,包括好的腸道菌,使它們無法對抗 C. difficile,雖然針對 C. difficile 的抗生素大多有效,但有時候會反覆感染,最後造成死亡。

 
Figure / Clostridioides difficile Infection (US CDC)

除了用抗生素治療,另一種就抗體治療,普通的做法是大量生產、純化抗體後,然後靜脈注射至血管內,經由血液進到腸胃道,中和困難梭狀桿菌產生的毒素。這篇研究的團隊,想說與其要經過層層運輸,不如基改益生菌,讓它可以生產抗體,吃下去後直接進入腸胃道,不是更方便?而且如果可以讓益生菌(probiotics)在體內生產抗體,還省掉了純化抗體需要的時間和金錢。

目前用來生產抗體的酵母菌以 Saccharomyces 和 Pichia 為主,Saccharomyces 是 baker's yeast,Pichia 則是 brewer's yeast,比較常用來大量生產蛋白。S. cerevisiae 可能大家比較常用,通常做 yeast 2-hybrid 就是用這株,這篇研究用的是 Saccharomyce boulardii。關於 S. boulardii 的研究不多,不過它和 S. cerevisiae 是同種,照理說基改後應該也可以生產抗體,中和困難梭狀桿菌的毒素 TcdA, TcdB。

這篇研究用來中和 TcdA, TcdB 的是小抗體 VHH,他們把四個可以中和 TcdA, TcdB 的 VHH 接在一起,之間用 GSSS linker 接在一起成為 ABAB,然後測試它們的中和效力,並且和 Merck 的抗體藥 actoxumab & bezlotoxumab 相比,老鼠實驗(腹腔注射)的結果顯示,效果比 Merck 的抗體藥好一千倍,接下來要解決的就是怎麼把 VHH 用非注射的方式送到腸胃道。研究團隊選擇用益生菌,在益生菌中選擇用 S. boulardii,原因有幾個:安全性已知道,也有治療 CDI 的基本效用,並可和抗生素一起使用。雖然沒有用 S. boulardii 表現抗體的研究,但同種的 S. cerevisiae 已被廣泛用來表現抗體。他們先試著在 S. cerevisiae 裡表現 ABAB,看用哪個 secretion signal 表現最好,然後在放到 S. boulardii,經過一些 optimization 之後,表現量可以增加四倍,然後測試 S. boulardii 生產的 ABAB 是否仍具有中和效用,細胞實驗的結果顯示是可以的,再來就是測試安全性了。

相關文章:Phage display 和小抗體製造

他們讓接受抗生素的老鼠每天吃一劑的 S. boulardii (10^9 CFU),看看是否有副作用,結果顯示老鼠除了變胖之外,沒有明顯的副作用。除此之外,老鼠的糞便中還可測到持續表現 ABAB 的益生菌,重要的是從腸胃道取出的 gut fluid 仍保有抑制 TcdB-induced toxicity 的效用,沒有被餵食基改益生菌的老鼠糞便則沒有抑制 toxicity 的效用。

通常在治療細菌感染或是術前準備時,會給病患吃抗生素,但服用抗生素會增加 CDI 的感染風險,那表現 ABAB 的益生菌可以解決這個困擾嗎?在預防性治療實驗中,他們讓接受抗生素的老鼠先吃七天表現 ABAB 的基改益生菌,或是沒表現 ABAB 的益生菌,然後再讓他們感染 C. difficle,結果發現沒吃益生菌或是吃沒表現 ABAB 益生菌的老鼠出現CDI 感染症狀,糞便裡有 C. difficle 和其毒素,而吃表現 ABAB 益生菌的老鼠則症狀輕微或是無症狀,糞便裡的 C. difficle 也相對少。用在急性感染治療上的效果如何呢?老鼠在感染後八到十二個小時內出現症狀,有的在 48 小時內死亡,存活率大概五成,而被餵食表現 ABAB 基改益生菌的老鼠存活率有八成,而且復原力也較高。

在臨床上,病患在停止抗生素治療後,有時會出現反覆感染的狀況。在預防反覆感染的實驗中,老鼠在接受感染的一天後開始每天吃基改益生菌,連吃十三天。沒接受表現 ABAB 益生菌或沒表現 ABAB 益生菌的老鼠在停止 vancomycin 後出現再度感染的情況,像是腹瀉、體重減輕或死亡,而服用表現 ABAB 益生菌的老鼠再度感染的狀況顯著降低,只有輕微腹瀉,也沒有體重降低的狀況。

好好奇糞便裡的基改益生菌是否仍有抑制 toxicity 的效用。哦,對了,反基改人士會不會說他們寧願吃抗生素,也不要吃基改益生菌呢?XD



Articles:

US CDC: Nearly half a million Americans suffered from Clostridium difficile infections in a single year

Science / Antibody-producing yeast vanquishes deadly gut infection in mice (Oct 2020)


Paper:

K Chen et al, A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Science Translational Medicine (2020)











未感染新冠病毒的人也有抗體

之前已有好幾篇研究顯示,未感染者體內有抗新冠病毒的免疫 T cells,有可能是因為和其他的冠狀病毒有 cross-reactivity。這篇研究用 flow cytometry 分析了未感染者和患者抗冠狀病毒 Spike protein 的三種抗體 IgA, IgM 和 IgG,想知道新冠病毒和感冒冠狀病毒之間 cross-reactivity 程度有多少。

相關文章:未感染過新冠病毒或 SARS 的人也有對抗新冠病毒的 T cells

冠狀病毒的 Spike protein 分成 S1 和 S2 兩個 domains,S2 在冠狀病毒間的相似度比較高,叫有可能是 cross-reactivity 的來源。他們的 competitive binding assays 結果顯示,未感染者和患者的血清抗體間的 cross-reactivity 主要在於 S2。跟未感染者的抗體相較,患者血清內的抗體免感度(sensitivity)和專一性(specificity)比較高。

相關文章:抗新冠病毒的 T cells 和抗感冒冠狀病毒的有 cross-reactivity

這種 cross-reactivity 有多普及呢?他們分析了疫情前 2011 年到 2019 年時收集的血清,和新冠病毒患者的血清做比較。結果顯示冠狀病毒間的 cross-reactivity 在年輕族群中比較普遍,2011 年到 2018 年間,十六歲以下的健康個體約有 50% 的血清內有可辨識新冠病毒 Spike 的 IgG,17 - 25 歲之間只有 2%;2019 年採集的中年族群的血清,約有 8% 有低量的、可辨識新冠病毒 Spike 的 IgG。例外,新冠病毒患者血清內同時有可辨識 Spike 的 IgG, IgM 和 IgA,而未感染者的則主要為 IgG,沒有 IgM 和 IgA,重要的是未感染者血清內的抗體具有中和新冠病毒的效力。



Paper:

KW Ng et al, Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science (2020)










抗新冠病毒的合成小抗體 sybodies

之前美國德州大學的研究團隊首先發表 Spike protein cyro-EM structure 後不久,又發表了一篇從駱馬身上釣出抗新冠病毒的小抗體 nanobodies。

相關文章:從駱馬體內得到的新冠病毒小抗體

nanobodis 是什麼呢?駱馬和鯊魚體內除了有普通的 IgG 之外,還有一種只有 heavy chain 的小抗體 HCAbs,其辨識抗原的 Fv (variable region)為 VHH,又稱為 nanobodies,近幾年因為體積小,相較傳統 IgG 易純化,開始受到注目。

相關文章:關於抗體和抗體藥的一些小知識

駱馬和鯊魚體內產生的小抗體是天然的,需要先把抗原打進駱馬體內,等牠們產生抗體後,從牠們的免疫細胞內抽出抗體的基因序列製造成 libraries,再用噬菌體展示(phage display)的技術釣出抗抗原的小抗體,這個普遍抓抗體的方法雖然不難,但費時費力,而且你需要先找到駱馬用 XD。

相關文章:Phage display 和小抗體製造

2018 年的時候,瑞士蘇黎世大學的研究團隊研發了三個針對細胞膜蛋白(membrane proteins)不同面的人造合成小抗體 libraries,這三個 libraries 的不同主要在於 CDR3 的長度,不同的長度會和蛋白表變不同的地方結合[註1],而從這些 libraries 釣出來的合成小抗體(synthetic nanobodies) 稱為 sybodies。

註1:他們把這三個 libraries 稱為 concave, loop, convex。Concave 的 CDR3 比較短,只有六個氨基酸長,主要透過它們 concave surface 和抗原結合。 Loop 的 CDR3 則是中長度(12 a.a.),是一個 loop 的形狀,可以進到接受器(receptor)的 cavity 而結合。Convex 的 CDR3 最長(16 a.a.),會形成一個 hydrophobic core 和抗原結合。


Figure / Selection of sybodies against membrane proteins within three weeks (Zimmermann et al, eLife 2018)

EMBL Hamburg 的研究團隊這個月在 Nature Comm 發表了他們的研究,他們從三個 sybody libraries 裡共釣出 85 個合成小抗體,純化了其中 62 個後,檢測了它們的 binding affinity,其中有六個和 Spike RBD 結合力很強,Kd 範圍約為 10 nM - 60 nM,其中以 Sb23 這株小抗體最強。

小抗體的結合力強,那是否有抑制病毒的作用呢?他們掃了 36 個小抗體,測試它們的中合力(neutralizaiton activity),發現其中十一個小抗體的 IC50 < 20 ug/ml,六個的 IC50 < 5 ug/ml,Sb23 的 IC50 則只有 0.6 ug/ml (48 pM),當它和 Fc 接在一起後,IC50 可達到 0.007 ug/ml (0.56 pM),未來有望用於治療。

IC50 用 ug/ml 來表示真是不習慣啊,於是我把它換算成 pM 惹。

Sb23 (MW = 12.5 kDa)
QVQLVESGGGLVQAGGSLRLSCAASGFPVESENMHWYRQAPGKEREWVAAIYSTGGWTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVQVGYWYEGQGTQVTVS



Articles:

EMBL Press release / cientists identify synthetic mini-antibody to combat COVID-19

TN / Synthetic Mini-Antibody Binds to and Neutralizes SARS-CoV-2 (Nov 2020)

Addgene blog / No Llamas Required - Synthetic Nanobodies Against Membrane Proteins (June 2020)



Papers:

 TF Custodio et al, Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nature Comm (2020)

I Zimmermann et al, Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife (2018)











2020年8月15日 星期六

減重手術讓你變成瘦子的腸道菌

大家看新冠病毒看膩了嗎?之前看到關於用腸道菌變瘦的文章,突然想起念研究所時看到的一篇研究,當時看的時候覺得好新奇,還跟我爸媽聊了這個研究,一直想分享,結果一直忘,現在想起來分享一下好了。

瘦子和胖子的腸道菌落有什麼不同嗎?醫療性的減肥方法之一是做胃繞道手術(roux-en-Y gastric bypass, RYGB),通常用來治療嚴重的肥胖症,手術後可以減掉 65% ~ 75% 的體重,而且是長期的,為什麼呢?是因為手術改變了生理上的代謝,改變了賀爾蒙的表現,還有什麼其他可能的原因呢?其中一個被想到的是腸道菌,手術是否會改變腸道菌的生態?2013 年發表在 Science Translational Medicine 的這篇是老鼠實驗,他們幫老鼠做了胃繞道手術後,研究牠的腸道菌變化。

這篇研究裡面用的老鼠株是被餵了高脂食物後就會肥胖的易胖鼠,被分成三組做實驗。

1. RYGB + HFD (high-fat diet)
胃繞道手術兩週後吃高脂食物,但是術後三週內,老鼠體重下降 29%,而且體重維持到實驗結束還是這麼低。他們發現手術後老鼠雖的肥肉雖然減少了,但是瘦肉還存在,重要的是牠們的脂肪肝程度和肝臟的三酸甘油酯(triglyceride)都比第二組的 SHAM 老鼠還要低。

2. SHAM + HFD
假裝有動手術但只是開個刀,手術兩到三個禮拜後就恢復原本的體重了,之後再吃了兩個禮拜的高脂食物後就胖惹 27%。

3. WMS = SHAM + restricted food
假裝有動手術但只是開個刀,但是一直被控制飲食,希望維持跟 RYGB 老鼠一樣的體重,發現要少吃 25% 熱量的食物才能維持跟 RYGB 老鼠一樣苗條的身材。這組的脂肪肝和三酸甘油酯都和 RYGB 老鼠一樣低,但這是因為牠們節制飲食才達到的成果,RYGB 老鼠則是一樣大吃大喝還是一樣瘦。



為什麼 RYGB 老鼠大吃大喝還能維持苗條的身材?他們發現雖然 RYGB 老鼠大吃大喝,但大部分的熱量都被大出來了,所以真的吃進去了熱量是其他兩組的一半而已。另外,RYGB 老鼠的血糖也正常,跟有控制飲食的 WMS 老鼠一樣。

胃繞道手術對腸道菌生態有影響嗎?他們分析了手術前的糞便和手術後三個月內每週的糞便,看看腸道菌生態有什麼改變,結果發現手術後一週就出現了變化,這個變化持續了幾週,然後在五個禮拜後趨於穩定,SHAM 和 WMS 這兩組老鼠的腸道菌則是沒什麼變化。RYGB 老鼠手術後體內的 Bacteroidetes, Proteobacteria (Escherichia) 和 Verrucomicrobia (Akkermansia) 迅速增加,且這種增加是長期性的,Firmicutes 裡面以 Clostridiales 為主。SHAM 的腸道菌落則沒有什麼變化,Firmicute 裡面是以 Lactobacillales 和 Erysipelotrichales 為主。



RYGB 的好處跟腸道菌生態有關嗎?他們把把 RYGB, SHAM 和 WMS 老鼠的腸道菌移植到瘦的無菌鼠(germ-free)體內,看看有什麼變化。結果發現無菌鼠在移植了 RYGB 的腸道菌兩週後,體重降低了 5%,沒移植腸道菌或移植了 SHAM 腸道菌的老鼠則體重沒有變化,不過移植了 SHAM 或 WMS 腸道菌的老鼠需要節食,體重才能維持跟沒移植的老鼠一樣。另外,雖然移植了 SHAM 腸道菌的老鼠在體重上沒太大變化,但體脂肪比沒做腸道菌移植的老鼠多了很多。

做過胃繞道手術老鼠的腸道菌在減重上有某種程度的貢獻,那在人類身上呢?2015 年發表在 Cell Metabolism 的研究分析了手術九年後的腸道菌變化。這篇研究的對象除了做胃繞道手術的之外,還有做垂直胃束帶隔間手術的(vertical banded gastroplasty, VBG),他們分析了 RYGB, VBG 和嚴重肥胖但沒做手術(OBS, obesity)的 BMI、腸道菌落,還有把腸道菌移植到無菌鼠體內後的影響。

分析發現 RYGB 手術後的腸道菌落和 VBG 和 OBS 差很多,但是 VBG 和 OBS 之間卻無太大差別。和老鼠一樣,RYGB 術後的腸道菌落中,gammaproteobacteria 比 OBS 要高,但是 Clostridium 比較低。當把腸道菌移植到無菌數體內後,接受 RYGB 人類腸道菌的老鼠的體脂在移植兩週後比接受 OBS 的少 43%,接受 VBG 腸道菌移植的則少 26%,這期間這三組老鼠的體重和飲食都一樣,不過接受 RYGB 老鼠的瘦肉平均增加率比其他兩組都高,RQ (respiration quotient, aka respiratory ration) 也比較低,顯示牠們的代謝是以消耗脂肪為主。

RQ = CO2 released / O2 absorbed

以上看來,腸繞道手術後形成的腸道菌落會改變代謝機制,增加熱量的消耗,進而造成脂肪降低。不過,移植腸道菌造成的減重是否是長期的,從這兩篇研究中看不出來,之前有研究顯示用移植腸道菌使其被移植者的腸道菌落改變是短暫的,想用腸道菌減肥可能需要長期的移植。另外,這兩篇都是用老鼠,在人類身上是否有相同效果並不知道。

相關文章:腸道菌也許可以用來治療氣喘和過敏

「腸道菌並不是你吃進去後就會順利在你體內住下來了,很多情況是過幾天後它們就消失了,所以需要每天吃。」



Papers:

AP Liou et al, Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine (2013)

V Tremaroli et al, Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism (2015)










2020年8月8日 星期六

抗新冠病毒的 T cells 和抗感冒冠狀病毒的有 cross-reactivity

另外兩篇關於 T cells 對新冠病毒反應的研究,一篇是分析健康個體和新冠患者的 T cells,一篇是分析未感染者體內對新冠病毒有反應的 T cells,看看他們和普通感冒的冠狀病毒是否有 cross-reactivity。

刊在 Science 的那篇之前已經有一篇發表在 Cell,同樣是分析健康個體和 COVID-19 康復患者的血清,然後發現所有康復患者都有可辨識新冠病毒 Spike protein 的 CD4+ (helper) T cells,T cells 的反應程度和 IgG 量成正向相關,然後七成的康復患者有可對抗新冠病毒的 CD8+ (killer) T cells,而且反應強烈。康復患者除了帶有可辨識 Spike protein 的免疫細胞外,他們也帶有可辨識其他病毒蛋白的 T cells,像是 M protein 和 N protein。

相關文章:新冠病毒感染者體內 T 細胞的免疫反應

在之前的研究裡,他們同樣也分析了疫情前採集到的血清,同樣帶有可辨識新冠病毒的 T cells。

「他們檢測了於 2015-2018 年採樣到、沒有感染過新冠病毒的血液檢體,結果發現其中有 40% - 60% 含有可以辨識新冠病毒的 helper T cells,不過和康復患者不同的是他們的 T cells 反應雖然也是以 Spike 為主,但幾乎沒有對 N protein 或 M protein 有反應的 T cells,次主要的是 NSPs (non-structural proteins)。而之所以會有這些 T cells,可能是因為這些人之前感染過其他種類的冠狀病毒,cross-reactivity 使他們體內也有能辨識新冠病毒的 T cells。研究者們認為這是之前感染其他四種引起感冒症狀的冠狀病毒時產生的,因為這些血液檢體裡都有針對至少其中三種常見冠狀病毒的 T cells,血清檢測也顯示全部都有 HCoV-OC43 和 HCoV-NL43 Spike protein 的 IgG 抗體,表示大多數人都感染過常見的四種感冒冠狀病毒,而且至少感染過超過三種,而這也可能是為什麼大部分的人感染到新冠病毒後都只是輕症或無症狀。」

註:常見的四種感冒冠狀病毒為 NL63, 229E, OC43 和 HKU1。

這和後來瑞典,以及 Duke-NUS 的研究結果相似,未感染者的體內有可辨識 Spike 和 NSPs 的 T cells,但是極少有可辨識 N protein 的。那這些對新冠病毒有反應的 T cells 是哪裡來的呢?是因為感染過感冒冠狀病毒而得來的嗎?如果是的話,表示抗普通冠狀病毒的 T cells 和抗新冠病毒的 T cells 是有 cross-reactivity 的。他們後來發表在 Science 的這篇研究,就是分析未感染者體內的 T cells 可辨識的新冠病毒蛋白有哪些,另一篇德國研究團隊發表在 Nuture 也做了類似的分析。(德國的這篇之前已先發表在 medRxiv)

相關文章:輕症及無症狀患者帶有可對抗新冠病毒的 T cells

他們用 2018 年採樣到的血清去掃新冠病毒的蛋白片段,看對哪些片段有反應,大部分對病毒蛋白有反應的為 CD4+ T cells,少數為 CD8 T cells,和之前的研究結果一致。用來測試 T cells 反應的病毒片段分為兩組,一組是 Spike 的片段,一組是非 Spike 的片段,能被 T cells 辨識的片段大約是個一半。T cells 有反應的 Spike 那一半只有 11% 的目標是 RBD,而非 Spike 的那一半則大多是 NSPs,並且沒有對 M proteins 有反應的。相較之下,COVID-19 患者的 CD4+ T cells 則是對 M proteins 有強烈反應。

ok, 那這些疫情開始前一年的血清到底是為什麼有抗新冠病毒蛋白的 T cells?到底是不是因為和其他普通的感冒冠狀病毒有 cross-reactivity?他們發現這些血清裡的 T cells 都對常見的感冒冠狀病毒有反應,包括了 NL63, OC42 和 HKU1。另外,有 57% 的 cross-reactivity 在於那些蛋白片段有 >67% 的相似度。

相關文章:未感染過新冠病毒或 SARS 的人也有對抗新冠病毒的 T cells

下面這個 podcast 是對這篇研究的討論:Immune 34 - Coronavirus cross-reacting T cells



如果對免疫細胞實驗不了解的,podcast 裡解釋滿清楚的,下面幾點是我筆記到的:

1. 未見識過新冠病毒的 naive T cells 被新冠病毒的蛋白片段刺激後(1st boost),會轉變成 memory T cells,memory T cells 如果再度接受刺激(2nd boost),則會快速繁殖(proliferation),因此如果未感染者血清內的免疫細胞接受新冠病毒的蛋白片段刺激後便快速繁殖,表示他們體內已有可辨識新冠病毒的 T cells。

2. MHCI 和 MHCII 辨識的 peptide 長度不一樣,MHCI 主要表現在 CD8+ T cells,能夠抓到 peptide 長度是 8-10 個氨基酸;MHCII 表現在 CD4+ T cells,辨識的則是 13-18 個氨基酸長,因為他們用的 peptide 長度是 14-15 個氨基酸長,所以抓到的主要是 CD4+ T cells,這並不表示未感染者體內沒有 anti-Spike CD8+ T cells,而是這個實驗設計本身就是以釣出 CD4+ T cells 為主。

3. 因為人體內的 CD4+ T cells 有兩種:未見識過新冠病毒的 naive T cells 和見識過新冠病毒的 memory T cells,如果這些 2018 年採集的、未感染過新冠病毒的血清內有可辨識新冠病毒的 T cells 是因為和其他冠狀病毒的 cross-reactivity 而產生的,則需要確定它們是 memory T cells,怎麼確定?Naive T cells 和 memory T cells 表面的 markers 不一樣,所以可以用來辨識是哪種。

德國的那個則是比較了 COVID-19 患者的血清和健康個體的 T cells 對新冠病毒的反應,83% 的患者對 Spike 有反應,35% 的健康個體對 Spike 有反應(健康個體的 PCR 和血清檢驗為陰性)。雖然 COVID-19 患者和健康個體的 T cells 都可以辨識 Spike,但是有些差別。COVID-19 的 T cells 對 Spike S1 和 S2 domain 的反應程度差不多,但健康患者對 C-terminal 的 S2 反應比較強烈,而這個部分和其他常見的感冒冠狀病毒相似度很高,於是他們測了健康個體血清裡的抗體,發現所有健康個體都帶有常見的冠狀病毒,而且是四個全帶。這也可能是為什麼小朋友不易感染新冠病毒,因為學校不時有感冒冠狀病毒傳來傳去,大部分的小朋友應該都有抗冠狀病毒的免疫細胞惹。XD

相關文章:感染過冠狀病毒是否就免疫了呢?

「當時參與研究的志願者中,只有 11% 體內沒有抗體,顯示在當時的年代(1961-1977),這株冠狀病毒非常普及。當一年後再讓這些志願者感染這株病毒,看看抗體是否還有保護作用,發現抗體對同株的病毒有保護作用,但對相近病毒(也就是同樣是 alphacoronavirus,但是不同病毒株)只有部分的保護作用。後來有篇研究(Callow et al, 1990)顯示,如果體內抗體量不夠的話,229E 的康復患者可被二次感染。參與此研究的志願者在感染病毒一週後,IgG 開始上升,然後在十四天時達到高峰,一年後再測的時候抗體量仍然比感染前高,當再一次接受感染挑戰的時候,雖然約有一半的人被二次感染,但都沒有症狀。另外,第一次感染的時候,在前五到六天都測得到病毒,而二次感染時,只有前兩天測得到病毒,顯示病毒被清掉的很快。」



所以,到目前大概知道了什麼?

1. 未感染的健康個體雖然沒有抗新冠病毒的抗體,但是有可辨識新冠病毒的 T cells。COVID-19 患者的 T cells 幾乎對所有新冠病毒的蛋白都有反應,包括 Spike, M & N proteins,以及 NSPs,但未感染者則是以 Spike 和 NSPs 為主,對 N 沒什麼反應。

2. 有的原因很可能是因為感染過常見的感冒冠狀病毒,體內已有抗冠狀病毒的 T cells,由於有 cross-reactivity,因此這些 T cells 也可以辨識新冠病毒。

3. Cross-reactivity 的部分目前知道的可能有 Spike S2 和一些 NSPs,homology 可能要高於 67%,cross-reactivity 才會比較高。


未感染者體內雖然有可辨識新冠病毒的 CD4+ T cells,但並不表示它們有保護作用,因為他們是 helper T cells,並沒有消滅病毒或感染細胞的實質功能,所以我還滿想知道未感染者體內是否有 CD8+ T cells。



原論文:

J Mateus et al, Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science (2020)

J Braun et al, SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature (2020)