顯示具有 mitochondria 標籤的文章。 顯示所有文章
顯示具有 mitochondria 標籤的文章。 顯示所有文章

2025年7月22日 星期二

癌細胞如何操控粒線體?竊取能量並摧毀免疫的雙重機制

最新發表在 Nature 的兩篇研究發現癌細胞不僅會從神經元竊取健康粒線體來增強其轉移與生長能力,甚至還能將自身損壞的粒線體轉移給免疫 T 細胞,讓它喪失免疫功能。這一系列發現顯示了癌細胞如何精準操控粒線體,在腫瘤微環境中取得生存優勢。

粒線體在癌症中的雙重角色


粒線體是細胞的能量工廠,負責產生ATP,對細胞的生存至關重要。粒線體功能失調會導致能量短缺和過多的氧化物(ROS)積累,損害細胞。過去的研究已知,靠近神經的腫瘤生長速度更快,且細胞之間能夠相互轉移粒線體,例如星狀膠質細胞會將轉移粒線體給受損的神經元,幫助它存活。不過,癌細胞與神經元、免疫細胞之間是否存在粒線體交換,一直是個未解之謎。

神經元為癌細胞供能:粒線體轉移增強轉移性


Mitchell Cancer Institute 的研究團隊透過綠螢光蛋白 eGFP 和自己開發的 MitoTRACER 去標記和追蹤粒線體的動向,發現粒線體的確會在神經元和癌細胞之間轉移。由於 eGFP 在進入接收的細胞後,亮度會掉很多,所以他們開發可以永久標記粒線體轉移的 MitoTRACER,被紅螢光蛋白 mCherry 的癌細胞在接受了神經細胞轉移過來的粒線體後,mCherry 會被移除,並會永久表現 eGFP。

▫️ 增強癌細胞代謝:與神經元共同培養後,癌細胞的粒線體呼吸率顯著提高。有趣的是,與癌細胞一起培養的神經元,其粒線體量也大幅增加。

▫️ 粒線體的轉移途徑:癌細胞和神經元之間的通道:當他們用螢光蛋白 eGFP 去標記神經元的粒線體,然後將它和將乳癌細胞培養在一起,結果發現神經元和癌細胞之間會形成一個奈米通道(tunnelling nanotube),神經元的粒線體會穿過那個通道跑到乳癌細胞中。

他們也基因改造了老鼠,使牠肚子脂肪裡的神經元也帶有 eGFP 標記的粒線體,然後再把癌細胞打進脂肪中。三個禮拜後,有些癌細胞出現了螢光粒線體。

▫️ 功能恢復與增生:粒線體恢復缺陷癌細胞功能:當他們基改癌細胞,使它們缺少粒線體,讓他們不會分裂,耗氧量也很低,表示代謝有問題。不過,把它們和神經細胞一起培養五天後,這些癌細胞就恢復代謝功能了,也開始增生,表示它們可能從附近的神經細胞中獲得了功能正常的粒線體。

在老鼠和人類身上也觀察到粒線體轉移對癌症的影響:
  • 在老鼠身上:他們利用 MitoTRACER 追蹤在老鼠體內的粒線體動向,發現雖然原位瘤中只有約 5% 的癌細胞獲得了神經細胞的粒線體,但在轉移到肺部和腦部的癌細胞中,粒線體的比例例分別飆升至 27% 和 46%。也就是說,粒線體轉移大幅增加了癌細胞的轉移能力。
  • 在人體身上:分析人類前列腺腫瘤組織樣本也發現,越靠近神經的癌細胞,其粒線體的含量也越多。



癌細胞將突變粒線體轉移給免疫 T 細胞以癱瘓其功能


癌細胞本身常帶有突變的粒線體 DNA (mtDNA),這會損害其能量生成。不只如此,在腫瘤微環境中,免疫 T 細胞內的粒線體也有功能失調,而這是導致 T 細胞耗竭、無法有效攻擊癌細胞的關鍵。不過,T 細胞的中粒線體會什麼會功能失調?

日本岐阜癌症研究中心的研究團隊從 12 名不同癌症類型的患者身上採集了腫瘤浸潤淋巴細胞的 T 細胞(Tumor-Infiltrating Lymphocytes, TILs),分析它們的粒線體 DNA (mtDNA)。除此之外,他們也用 MitoDsRed 去標記癌細胞的粒線體,也用 MitoTracker Green 去標示免疫 T 細胞的粒線體,藉以追蹤它們的動向。

▫️ 共享的粒線體突變:在 12 名患者中,有 5 名的 TILs 中被檢測到 mtDNA 突變,其中三位的 TILs 和癌細胞帶有相同的 mtDNA 突變。

▫️ 粒線體的單向轉移:癌細胞和 T 細胞在共同培養超過 24 小時後,免疫 T 細胞內出現了紅色螢光,表示癌細胞的確把自己的粒線體轉移給了免疫 T 細胞。

▫️ 完全取代:癌細胞和 T 細胞在共同培養 15 天後,部分 T 細胞內的粒線逐漸消失,被來自癌細胞的粒線體完全取代,也就是同質性替換(Replacement to Homoplasmy)。

粒線體轉移的秘密通道


他們用藥物來檢測粒線體是怎麼被轉移的,發現有兩個方式:
  1. 奈米通道(Tunnelling Nanotubes, TNTs):用藥物抑制奈米通道的形成,或使用物理隔板阻止細胞直接接觸,都能大幅減少粒線體的轉移,顯示透過 TNTs 進行的直接細胞接觸是主要途徑之一。
  2. 細胞外囊泡(extracellular vesicles, EVs):使用能阻斷 EVs 釋放的藥物,同樣能顯著減少轉移。另外,即便阻止了細胞間的直接接觸,藥物仍然讓轉移率變更低,他們也從純化出的 EVs 中發現了粒線體蛋白,顯示細胞外囊泡確實能攜帶粒線體。

粒線體失調的影響:為何免疫療法會失效?


免疫 T 細胞在接收了來自癌細胞的、帶有突變的粒線體後,其功能變被破壞了,包括新陳代謝失調、提早衰老、無法形成長期記憶,以及無法被活化以進行攻擊癌細胞的任務。
  • 老鼠模型:在 T 細胞粒線體功能缺陷的老鼠中,PD-1 抑制劑的療效明顯減弱了。即使接受 PD-1 抑制劑治療,這些老鼠也無分像正常老鼠一樣增加具有攻擊力的 T 細胞。
  • 人類臨床數據:腫瘤中帶有 mtDNA 突變的皮膚癌和肺癌患者(melanoma, NSCLC)在接受 PD-1 抑制劑治療後,其無惡化存活期(progression-free survival)和總體存活期(overall survival)都比沒有 mtDNA 突變的患者要短。

結論


總結來說,癌細胞展現了令人驚訝的精密策略:一方面從神經元竊取健康的粒線體來助長自身擴散,另一方面又將受損的粒線體轉移給T細胞,以摧毀免疫防線。這也太邪惡了吧!

這一發現也直接解釋了臨床上的難題。

由於健康的T細胞是 PD-1 抑制劑等免疫療法成功的基礎,癌細胞對 T 細胞粒線體的破壞,無疑是削弱免疫療效、導致治療失敗的關鍵因素之一。



☕️ 如果你喜歡這篇內容,歡迎賞一杯咖啡。😊

合作邀約: nonproscience@gmail.com
📍 文稿:科普文、公司文、產業文等等
📍 諮詢:實驗設計、加拿大研究所、生科產業



Articles:

Nature | Cells are swapping their mitochondria. What does this mean for our health?

Nature | Mitochondrial swap from cancer to immune cells thwarts anti-tumour defences

Tumours may get supercharged by acquiring powerhouses of nerve cells | Science | AAAS


Publications:

G Hoover, S Gilbert, Curley, O. et al. Nerve-to-cancer transfer of mitochondria during cancer metastasis. Nature (2025) DOI: 10.1038/s41586-025-09176-8

H Ikeda, K Kawasei, T Nish et al. Immune evasion through mitochondrial transfer in the tumour microenvironment. Nature (2025) DOI: 10.1038/s41586-024-08439-0










2019年12月27日 星期五

研發中的阿茲罕默症藥物顯示有抗老效果

去年 Salk Institute 發表了一篇研究說他們發現三個研發中的阿茲罕默症藥物有抗老的功效,這三個合成物質是 CMS121, CAD31 和 J147。研究團隊先從植物中的兩個物質著手,分別為蔬果內的黃酮醇(flavonol) fisetin 和薑黃(turmeric)內的薑黃素(curcumin),然後再從這兩者個結構合成出相似的這三個化學物質,CMS121 是由 fisetin 衍化而來,J147 和 CAD31 則是由薑黃素衍化而來。研究團隊測試它們的抗老功效,是否符合抗老話的標準:可以保護大腦免於受到老化所造成的傷害、可以改善各種神經性疾病或老化等現象,而且可以降低或減緩老化造成的的生理上或分子上的感變。結果顯示這五樣都符合標準,屬於 geroneurprotectors (GNPs)。

之後他們把 CMS121 和 J147 試驗在老鼠身上,研究結果於上個月發表,顯示這兩個物質有抗老化效果。他們用老化很快的基轉老鼠 SAMP8 (senescence-accelerated mouse prone 8) 上去試驗,這株老鼠出現老化的現象比平常老鼠快,例如喪失活動力、學習能力和記憶力退化,且死亡年齡也比較早。除此之外,這些老鼠在四個月到一年大的時候,海馬迴中的 Aβ 量便開始增加。


Figure / Model of the influence of mitochondrial dynamics on aging (AY Seo et al, JCS 2010; doi: 10.1242/jcs.070490)

CMS121 的目標蛋白尚不知道,J147 則是作用在 ATP synthase,在老鼠九個月大的時候給藥,相當於人類的中老年時期,然後在四個月後測試老鼠的記憶力衰退情況和檢測老化的幾個 biomarkers。他們發現,不管在細胞實驗中還是老鼠實驗中,這兩個物質改變了一些參與在 ETC (electron transport chain) 和 TCA cycle (aka Krebs cycle) 裡的基因表現量,例如它們抑制 ACC1 (acetyl-CoA carboxylase 1),進而造成 acetyl-CoA 增加,使細胞的代謝機制可以正常運作,維持好粒線體的功能有 neuroprotective 的作用。另外,接受 CMS121 或 J147 的老鼠在記憶力和認知力任務上的表現比較好。



Articles:

Salk News / Researchers report new methods to identify Alzheimer’s drug candidates that have anti-aging properties (Nov 2018)

Salk News / Alzheimer’s drug candidates reverse broader aging, study shows (Dec 2019)


Papers:

A Currais et al, Elevating acetyl-CoA levels reduces aspects of brain aging. eLife (2019)

D Schubert et al, Geroneuroprotectors: Effective Geroprotectors for the Brain. Trends Pharmacol Sci (2018)

DA Butterfield & HF Poon, The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Exp Gerontol (2005) 










2016年10月25日 星期二

粒線體移植:有三個父母的小孩

你能想像你的親生父母親有三位嗎?最近有個新聞是說有個嬰兒的 DNA 來自三個人,兩個媽媽和一個爸爸。嬰兒的父母是約旦人,媽媽帶有因粒線體基因(mtDNA)突變(8933T>G)而造成的罕見疾病 Leigh's syndrom,是一種神經性疾病。她流產了四次,有兩個小孩分別在八個月大和六歲大的時候因此疾病而死,被診斷出有 98% 的粒線體基因帶有突變 [7],因此求助於紐約的 New Hope Fertility Center,利用體外受精(IVF, in vitro fertilization)技術幫她製造了一個粒線體沒有問題的受精卵,然後在今年四月她的小男孩出生了。

執行這個技術的是 John Zhang 和他的團隊,雖然這個團隊是在美國,但因為法規的問題,所以手術是在墨西哥進行的。粒線體治療(MRT, mitochondria replacement therapy)有兩種,一種是 pronuclear transfer (PN),是先讓媽媽帶有異常粒線體的卵子和爸爸的精子先受精,然後再把受精後的 pronuclei (細胞核)取出來,放到粒線體正常(第三者)的受精卵裡(其 pronuclei 已先被取出)。另一種是 maternal spindle transfer (SNT, spindle nuclear transfer),是先把媽媽的卵子細胞核裡的染色體先取出來,放到粒線體正常(第三者)的卵子裡(染色體已先被取出),然後再讓換過染色體、粒線體正常的卵子和爸爸的精子受精 [1]。


Figure: E Callaway, Nature 2014

這對夫妻因為宗教因素選擇了用 SNT。Zhang 團隊做了五個受精卵,把其中一個送到媽媽體內,之後成功存活並且出生了,這個嬰兒因此帶了三個人的 DNA,分別來自爸爸和媽媽的染色體(nuclear DNA),和捐贈者(donor)的粒線體 DNA [2, 3]。

事實上這並不是第一次使用 MRT,第一次利用 MRT 而出生的嬰兒是在 1990 年代,只不過那時是用 PN,這次則是第一次使用 SNT 出生的嬰兒。而英國也在去年二月通過了法案,讓 MRT 治療合法化 [4, 5]。在美國,理論上是可以使用 MRT,只是需要 FDA 審核通過,不過去年 Congress 禁止 FDA 使用政府的經費審核想要操作人類胚胎基因的提案,而禁令可能會持續到 2017 年,所以這次是在墨西哥做的,因為墨西哥目前還沒有法律可管。此舉當然引發不少爭議,除了倫理上的,還有一些技術上的問題 [2, 3, 5]。

根據目前發表在 Fertility and Sterility 的 abstract [7],還有 Zhang 在十月 19 日在 American Society for Reproductive Medicine 年會裡的報告 [3],幾乎所有的卵子的 mitochondrial DNA 都有突變,但是把母親卵子的細胞核轉到 donor 的細胞核後,轉移後的卵子只剩 5% 的 mtDNA 帶有突變。雖然 MRT 的先驅 Jacques Cohan 說在 20% 以下都不會有症狀,但是紐約 Stem Cell Foundation 幹細胞專家,同時也是研發 MRT 的 Dietrich Egli 認為 5% 算是高了,因為正常嬰兒細胞內有問題的 mtDNA 平均只有 1.6%,雖然這是有意義的一個進展,但技術操作的不算好,他擔心帶過去的那 5% 的突變 mtDNA 是否會造成小孩在發育和生長上的問題 [2, 3]。

時隔一年後的 2017,Zhang 發表了手術的細節,還有嬰兒的狀況 [6, 8]。 他說嬰兒小便中的細胞,其帶有的 mtDNA 只有 2% 是有問題的,但是包皮細胞帶有的 mtDNA 則是高達 9% 是有問題的,至於其他的器官則難以檢驗,而據知小孩的父母目前也拒絕接受其他檢查,除非有治療上的需要。



Articles:

1. Ewen Callaway, Reproductive medicine: The power of three. Nature, News (2014)

2. Sara Reardon, ‘Three-parent baby’ claim raises hopes — and ethical concerns. Nature, News (2016)

3. Sara Reardon, Reports of ‘three-parent babies’ multiply. Nature (2016)

4. Ewen Callaway, World hails UK vote on three-person embryos. Nature (2015)

5. Ewen Callaway, Three-person embryos may fail to vanquish mutant mitochondria. Nature (2016)

6. Sara Reardon, Genetic details of controversial 'three-parent baby' revealed. Nature (2017)


Papers:

7. J Zhang et al, First live birth using human oocytes reconstituted by spindle nuclear transfer for mitochondrial DNA mutation causing Leigh syndrome. Fertility and Sterility (2016) Abstract.

8. M Alikani et al, First birth following spindle transfer for mitochondrial replacement therapy: hope and trepidation. Reproductive BioMedicine Online (2017)