顯示具有 CTX001 標籤的文章。 顯示所有文章
顯示具有 CTX001 標籤的文章。 顯示所有文章

2021年7月24日 星期六

CRISPR-Cas9 基因治療(下)-- 遺傳性澱粉樣蛋白疾病 hATTR

CRISPR-Cas9 大家應該都不陌生吧,此技術的發明者 Dr. Doudna 和 Dr. Charpentier 因此技術得了2020 年的諾貝爾化學獎。Dr. Doudna 和 Dr. Charpentier 在 2012 年的時候先於 Science 發表了用 CRISPR-Cas9 基因編輯的成果,之後在 2013 年要把這個技術申請專利的時候,所屬的 Berkeley 大學和 MIT 的 Dr. Zhang 開始了專利之戰。接著,2014 年時 Dr. Doudna 成立了 Intellia Therapeutics,而 Dr. Charpentier 也已於 2013 年在瑞士成立了生技公司 CRISPR Therapeutics。

相關文章:CRISPR-Cas9 的專利大戰和爭議

CRISPR-Cas9 用於治療上,CRISPR Therapeutics 似乎搶先了一步,它和 Vertex Pharmaceuticals 合作研發了用於治療血液疾病的 CTX001,並於 2018 年開始了臨床試驗,2019 年五月時宣佈了用於治療鐮刀型紅血球疾病(sickle cell disease, SCD)的乙型地中海貧血(transfusion-dependent β thalassemia, TBT)的第一、二期臨床試驗結果,那時最先是兩個臨床試驗各一位患者,兩位患者的臨床試驗結果也於今年一月發表在 NEJM [1]。

CTX001 治療是把造血幹細胞(hematopoietic stem cells, HSP)抽出來,利用 CRISPR-Cas9 調控血紅蛋白,再把修正過後的紅血球輸回病患體內。TBT 患者在治療前每年需要接受多次輸血,而在接受治療九個月後便不再需要輸血。SCD 患者在治療前每年會發生多次 vaso-occlusive crises (VOCs),在治療後便不再出現 VOCs。兩位病患在治療後觀察一年的期間內,HbF 都持續穩定的增加,雖然治療中都出現不適的情況,不過診斷過後排除是治療造成的 [1]。CTX001 已於 2019 四月拿到 FDA Fast Track Designation,Vertex 計劃在未來兩年內送 FDA,並於今年四月宣布給 CRISPR Therapeutics $900M 在研發、量產和上市上 [2]。

相關文章:CRISPR-Cas9 基因治療(上)-- 遺傳性血液疾病



相較於 CRISPR Therapeutics,Dr. Doudna 的 Intellia Therapeutics 今年六月才在 NEJM 上發表了其 NTLA-2001 的第一期臨床試驗結果 [3]。NTLA-2001 是用來治療 hereditary transthyretin amyloidosis (hATTR)。ATTR 有兩種,一種是隨著年齡增長得病機率越大的 wild-type (senile) ATTR,另一種是罕見且會致命的遺傳性 ATTR (hATTR)。TTR (transthyretin, 轉甲狀腺素蛋白)是個只有 14 kDa 的小蛋白,主要功能是運送甲狀腺素(thyroxine)和視黃醇(retinol),在肝臟中和成後,通常以 tetramer (55 kDa) 的型態遊走在腦脊液(cerebrospinal fluid, CSF)和血液中。

Wild-type ATTR 是因為正常的 TTR 隨著年齡增長而變得不穩定,使得蛋白容易出現摺疊錯誤(misfold)的情況。摺疊錯誤的 TTR 無法組合成 tetramer,而是以 monomer 或 dimer 的型態存在,並且當這些 misfold monomer 碰在一起時,會變成 aggregates,跟造成阿茲海默症的 β-amyloid aggregates 一樣會堆積在組織細胞或神經細胞中,導致細胞死亡,稱為 amyloidogenesis [4]。hATTR 則是因為 TTR 基因突變而造成的,突變的 TTR 比正常的 TTR 更不穩定,更容易摺疊錯誤和堆積。

ATTR 主要發生在心臟和神經系統,目前用來治療 ATTR 的基因療法有兩個,皆已於 2018 年拿到美國 FDA 許可:Alnylam (Nasdaq: ALNY) 的 Onpattro (patisiran) [5] 和 Ionis Pharmaceuticals, Inc. (NASDAQ: IONS) 的 TEGSEDI (inotersen) [6]。Onpattro 用的是 small interfering RNA (siRNA, aka RNA interference, RNAi),是第一個得到 FDA 許可的 RNA 療法,是利用 NLP (lipid nanoparticles) 把 siRNA 直接送進肝臟裡,使 TTR 的 mRNA 不能被轉譯成蛋白質,TTR 表現可以降低 80% [5-8]。TEGSEDI 則是 antisense oligonucleotides (ASO),一樣是針對 TTR mRNA,使正常和突變的 TTR mRNA 被降解,無法轉譯成蛋白,同樣可以降低 TTR 表現 80% [6]。

Intellia Therapeutics 和 Regeneron Pharmaceuticals 合作研發的 NTLA-2001 也是利用 NLP 把 CRISPR-Cas9 送進體內,使 CRISPR-Cas9 進入肝臟細胞後可以造成 indels (insertions or deletions) 阻斷 TTR 基因,降低 TTR 的表現和血液裡的 TTR 含量。Intellia 於於去年十月底宣布他們將在英國和紐西蘭開始第一期臨床試驗,參與人數為 38 人,主要是檢測其安全性和有效性 [7]。

今年六月底,Intellia 在 Peripheral Nerve Society (PNS) Annual Meeting 發表了第一期臨床試驗的期中報告,同時也發表在 NEJM,論文裡的參與人數為六位患者,分為兩組不同劑量:0.1 mg/kg 和 0.3 mg/kg。ATTR 患者以靜脈注射的方式接受了一劑 NTLA-2001,然後在 28 天後測量其血清中 TTR 含量。結果顯示接受低劑量(0.1 mg/kg)的患者,其血清的 TTR 減少了 52%,而高劑量組(0.3 mg/kg)的血清 TRR 則減少了 87% [8-11],比 Onpattro 和 Tegsedi 的 80% 還要好一些,不過 NTLA-2001 的優勢在於它只需一劑,Onpattro 則需每三週施打一次,Tegsedi 也要每週一次 [6, 8]。副作用方面,只有三個人出現輕微副作用,沒有觀察到嚴重副作用。臨床結果發表當週也是他們的 IPO,以每股 $145 的價格上市 [12]。



CTX001 和 NTLA-2001 不同的地方在於 CTX001 是把目標細胞抽出來基因編輯,NTLA-2001 則是需要把 CRISPR-Cas9 送進體內,因此如何讓它到準確地達目標器官或細胞是需要克服的瓶頸。雖說 Intellia 第一期臨床試驗目前看來頗為成功,但因為目標器官是肝臟,大多經由靜脈施打的 liposomes 都會先被肝臟吸收。Dr. Doudna 日前在 CNBC 訪問時表示,CRISPR 基因治療能有局限,要如何把 CRISPR-Cas9 送進目標器官裡仍是個需要解決的難題 [13],不過要是能克服這個瓶頸,未來便可應用在更多疾病治療上。


Clinical trial: NCT04601051


[2022-09-29 update]

Intellia 研發的、用來治療遺傳性澱粉樣蛋白疾病(hereditary transthyretin amyloidosis, hATTR)的 CRISPR 基因療法 NTLA-2001 的最新報告顯示,只需一劑就夠了。在靜脈施打一劑 NTLA-2001(0.7-mg/kg) 的 28 天後,TTR 降了 93%。

而他們的另一個藥物 NTLA-2002 正在第 1/2 期臨床試驗中,是用來治療罕見疾病 hereditary angioedema (HAE, 遺傳性血管性水腫),病徵是血液中的 bradykinin (緩激肽, 血管擴張劑)上升,血管外部的體液堆積擠壓到血管,造成血液流通或淋巴液流通不順暢,導致手腳和臉部等部位水腫。HAE 是一種顯性的遺傳疾病,因此只要父母其中之一有這個突變的基因,小孩就有 50% 的機會得到。HAE 是由於 C1 inhibitor (C1-INH) 不足所引起的,C1 inhibitor 是一種 serine protease inhibitor,由基因 SERPING1 表現,SERPING1 的突變會導致 C1 inhibitor 無法表現或是功能缺失。後來研究發現,除了 SERPING1 外,factor XII (F12), plasminogen (PLG) and angiopoietin 1 (ANGPT 1) 的突變也會造成 HAE,95% 的 HAE 是由 SERPING1 突變造成的。C1 inhibitor 主要是抑制 F12 和 kallikrein,因此 C1-INH 不足或功能不正常會導致 F12 和 kallikrein 無法被調控,進而造成 bradykinin 上升。NTLA-2002 即是針對 kallikrein,最新的臨床節果顯示 75 mg 的劑量可以在施打八週後降低血液中 92% 的 kallikrein。



References:

1. H Frangoul et al, CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. NEJM (2020)

2. Vertex / Vertex Pharmaceuticals and CRISPR Therapeutics Amend Collaboration for Development, Manufacturing and Commercialization of CTX001™ in Sickle Cell Disease and Beta Thalassemia (April 2021)

3. JD Gillmore et al, CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. NEJM (2021)

4. GY Park et al, Diagnostic and Treatment Approaches Involving Transthyretin in Amyloidogenic Diseases. Int J Mol Sci (2019)

5. US FDA / FDA approves first-of-its kind targeted RNA-based therapy to treat a rare disease (Aug 2018)

6. Ionis / Akcea and Ionis Receive FDA Approval of TEGSEDI™ (inotersen) for the Treatment of the Polyneuropathy of Hereditary Transthyretin-Mediated Amyloidosis in Adults

7. Gene Online / Intellia Trials CRISPR Drug as Permanent Cure to Fatal Hereditary Disease (Oct 2020)

8. MedCity News / Intellia’s early CRISPR trial data validate a drug pipeline and the gene-editing field (June 2021)

9. CRISPR News / Clinical Trial Update: Positive Data for First Ever In Vivo CRISPR Medicine (June 2021)

10. Clinical Trials Arena / Intellia and Regeneron report positive data of CRISPR therapy for ATTR (June 2021)

11. Intellia and Regeneron Announce Landmark Clinical Data Showing Deep Reduction in Disease-Causing Protein After Single Infusion of NTLA-2001, an Investigational CRISPR Therapy for Transthyretin (ATTR) Amyloidosis (June 2021)

12. BioSpace / Intellia Tops Busy Period with $600 Million IPO

13. CNBC / How CRISPR gene editing will treat diseases in future: Nobel-winning Intellia co-founder Jennifer Doudna

14. Intellia / Intellia Therapeutics Announces Positive Interim Clinical Data for its Second Systemically Delivered Investigational CRISPR Candidate, NTLA-2002 for the Treatment of Hereditary Angioedema (HAE) (Sept 2022)

15. FIERCE Biotech / Intellia's gene editing therapies both post early successes as evidence grows for CRISPR potential

16. Biopharma Dive / Intellia offers first look at CRISPR drug for rare swelling disorder












2019年11月30日 星期六

CRISPR-Cas9 基因治療(上)-- 遺傳性血液疾病

CRISPR-Cas9 是由美國 Berkeley 大學的 Dr. Doudna 和德國 MPUSP 的 Dr. Charpentier 合作研發的,兩位並於 2020 年得到諾貝爾化學獎。2023 年年底,美國 FDA 核准了用於兩個鐮刀型紅血球疾病(sickle cell disease, SCD)的基因治療:Vertex Pharmaceuticals 和 CRISPR Therapeutics 合作的 Casgevy (exagamglogene autotemcel, exa-cel) 和 Bluebird Bio 的 Lyfgenia (lovotibeglogene autotemcel, lovo-cel)。而後於 2024 年一月,FDA 也核准 Casgevy 用於治療乙型地中海貧血(transfusion-dependent β thalassemia, TBT)。

乙型地中海貧血(TBT)的成因


這兩種病是因為血紅蛋白基因突變而造成的,血紅蛋白(hemoglobin, Hb) 是由四個蛋白組成的:兩個 α-globin (HbA) 和兩個 β-globin (HbB)。TBT 是因為 HbB 突變而造成的,致病的突變有很多種,常見的突變是 β0/IVS-I-110 (G→A)(上圖紅色箭頭),是一個在 intron 裡的突變,這個突變會使 mRNA splicing 不正常(splicing mutation),無法轉譯成 HBB。如果突變是造成不正常 mRNA,無法轉譯成 HBB,導致無法組成血紅蛋白,紅血球無法運送氧氣,為 β0-thalassemia (thalassemia major)。如果突變是減少 HBB ,則是較輕微的 β+ thalassemia (thalassemia minor),這種情形是還是可以生產血紅蛋白,但是量比正常人少,但需要長期接受輸血。

註:IVS = intervening sequences,IVS1 表示在第一個 intron 裡面。


Figure / β globin gene and mRNA. (G Breveglieri et al, Biomed Res Int. 2015; doi: 10.1155/2015/687635)

鐮刀型紅血球疾病(SCD)的成因


SCD 也是因為 HBB 突變造成,最常見的突變是 HbS,第六個氨基酸的 glutamic acid 突變成 valine (GAG → GTG):βE6V。這個突變會使血紅蛋白黏在一起,結塊在一起,如果兩個 HBB 基因都帶有這種突變的話,結塊的程度會讓紅血球變成鐮刀的形狀。


Figure / HBB IVS-I-110 (G→A) mutation (G Feriotto et al, Lab Inves 2004; doi: doi.org/10.1038/labinvest.3700106)

2013 年的時候,Boston Children's Hospital 和 Dana-Farber Cancer Institute 的研究團隊發現 BCL11A 控制著 HbF (fetal Hb) 的表現。HbF 是胚胎時期的血紅蛋白,和成人的 Hb 不同的地方在於它是由兩個 α-globin 和兩個 γ-globin 組成,γ-globin 則和 β-globin 相似,嬰兒出生後,血紅蛋白的 γ-globin 會被 β-globin 取代,不過有極少數人一生都會不停的生產 HbF,被稱為 hereditary persistence of fetal hemoglobin (HPFH)。有 HPFH 的人基本上都很健康,但是極少數有 HPFH 的 SCD 患者,他們的 SCD 症狀非常輕微,因此學者們就開始研究要怎麼讓 SCD 患者體內可以大讓生產 HbF。BCH 和 Dana-Farber 的研究團隊發現,成人紅血球內有大量的 BCL11A,當他們把 BCL11A 表現降低後,HbF 就會大量增加 [5]。

CASGEVY™ 的治療方式


2019 年十一月時,Dr. Charpentier 創立的瑞士的生技公司 CRISPR Therapeutics 和美國波士頓的 Vertex Pharmaceuticals 公佈了他們 CRISPR-Cas9 基因治療 CTX001 的第一、二期臨床試驗結果 [1-3]。這個試驗的兩位病患分別患有鐮刀型紅血球疾病(sickle cell disease, SCD)和乙型地中海貧血(transfusion-dependent β thalassemia, TBT),患有地中海貧血的病患在今年初開始接受治療,SCD 病患則在今年年中接受治療,而 CTX001 也在四月底時拿到用來治療 TBT 的 FDA Track Designation [4]。

CTX001 治療是把造血幹細胞(hematopoietic stem cells, HSPs)抽出來,用電擊(electroporation)把 CRISPR-Cas9 送進細胞裡,利用 CRISPR-Cas9 的編輯功能阻斷 BCL11A 的表現,使紅血球能夠生成 HbF,再把編輯過後的紅血球輸回病患體內 [1, 2]。2020 年年底,他們把追蹤一年後的臨床結果發表在 NEJM。他們先是抽了十位健康個體的 CD34+ HSPs 做基因編輯,看修正率和 off-target editing 有多少。分析後的結果是修正率有 80±6%,編輯過後 HSP 的 HbF 增加了 29.0±10.8%,沒編輯過的則是 10.5±5.2%,他們也沒發現有 off-target editing 的情況。TBT 患者在治療前每年需要接受多次輸血,而在接受治療九個月後便不再需要輸血。SCD 患者在治療前每年會發生多次 vaso-occlusive crises (VOCs),在治療後便不再出現 VOCs。兩位病患在治療後觀察一年的期間內,HbF 都持續穩定的增加,雖然治療中都出現不適的情況,不過診斷過後排除是治療造成的。研究中表示,之後有六位 TBT 和兩位 SCD 患者參與 CTX001 治療,在追蹤了至少三個月後,治療效果和前兩位患者一樣。不過,雖然所有患者在治療後 HbF 持續增加,不過有件令人擔憂的事。之後在 ASH 發表其中七位的病患資料中顯示,正常的成人版 Hb 似乎有下降的趨勢,HbF 和成人版 Hb 似乎會競爭 [6, 7]。

Vertex 於 2021 年四月宣布和將給 CRISPR Therapeutics $900M 在研發、量產和上市上,雙方同意在支出和營收上,Vertex 負擔 60% 的支出和在上市後拿 60% 的營收 [8, 9]。2023 年四月,Vertex 和 CRISPR Therapeutics 將藥物申請送 FDA 審核,此療法原本叫 CTX001,以 exa-cel 這個名稱送審,取之於 exagamglogene autotemcel。2023 年年底,FDA 核准該藥用於治療 SCD,以商品名 CASGEVY™ 上市,之後於 2024 年年初獲得核准用於治療 TBT。

另外要提的是 Vertex 的在治療 TBT 上有個競爭對手 bluebird bio,它的 Zynteglo 已在 2019 年六月於歐洲上市,但是尚未拿到美國 FDA 許可。2021 年二月的時候,公司決定停止銷售 Zynteglo,因為它的另一個用來治療 SCD 的基因治療 LentiGlobin 在第一、二期臨床試驗的中,有兩位患者分別得到急性血癌(acute myeloid leukemia, AML)和骨髓增生異常綜合症(myelodysplastic syndrome, MDS),而 Zynteglo 用的 lentiviral vector 和 LentiGlobin 是相同的 [10, 11]。Zynteglo 在美國的臨床試驗先前也遭到暫停,不過六月時 FDA 讓它恢復 TBT 第三期的臨床試驗,LentiGlobin 目前也在第一、二期臨床試驗中。雖然如此,要申請 FDA 審核也要延到 2022 年年底,因此 Vertex 的 CTX001 可能搶先一步 [12]。


Clinical trials:
NCT03745287 (CLIMB SCD-121) - A Safety and Efficacy Study Evaluating CTX001 in Subjects With Severe Sickle Cell Disease
NCT03655678 (CLIMB THAL-111) - A Safety and Efficacy Study Evaluating CTX001 in Subjects With Transfusion-Dependent β-Thalassemia



Articles:

1. Science | Company claims signs of success with CRISPR-edited stem cell transplants for two genetic diseases (Nov 2019)

2. The Scientist | Early Results Are Positive for Experimental CRISPR Therapies (Nov 2019)

3. VERTEX News | CRISPR Therapeutics and Vertex Announce Positive Safety and Efficacy Data From First Two Patients Treated With Investigational CRISPR/Cas9 Gene-Editing Therapy CTX001® for Severe Hemoglobinopathies

4. GlobeNewswire | CRISPR Therapeutics and Vertex Announce FDA Fast Track Designation for CTX001 for the Treatment of Beta Thalassemia (April 2019)

5. NIH Director's Blog / A CRISPR Approach to Treating Sickle Cell (April 2019)

6. FIERCE Biotech | CRISPR, Vertex show CRISPR/Cas9 gene-editing therapy works in more patients (Nov 2020)

7. 2020 ASH | 4 Safety and Efficacy of CTX001 in Patients with Transfusion-Dependent β-Thalassemia and Sickle Cell Disease: Early Results from the Climb THAL-111 and Climb SCD-121 Studies of Autologous CRISPR-CAS9–Modified CD34+ Hematopoietic Stem and Progenitor Cells

8. Vertex | Vertex Pharmaceuticals and CRISPR Therapeutics Amend Collaboration for Development, Manufacturing and Commercialization of CTX001™ in Sickle Cell Disease and Beta Thalassemia (April 2021)

9. GEN News | Vertex Pays $900M Upfront to Lead CTX001 Development with CRISPR Therapeutics (April 2021)

10. FIERCE biotech | Bluebird bio gets FDA green light to restart sickle cell gene therapy trials after rocky few months (June 2021)

11. FIERCE Pharma | Bluebird's Zynteglo trials set to resume, putting gene therapy back on flight path to FDA filing (June 2021)

12. FIERCE Pharma | Bluebird tanks as FDA's LentiGlobin demands in sickle cell delay filing to late 2022 (Nov 2020)

13. BioPharma Dive | Vertex, CRISPR finish US filing for gene editing drug approval (2023)




Papers:

NF Olivieri, The β-Thalassemias. NEJM (1999)

Vijay G Sankaran et al, Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor BCL11A. Science (2008)

H Frangoul et al, CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. NEJM (2020)