2019年11月30日 星期六

CRISPR-Cas9 基因治療(上)-- 遺傳性血液疾病

CRISPR-Cas9 是由美國 Berkeley 大學的 Dr. Doudna 和德國 MPUSP 的 Dr. Charpentier 合作研發的,兩位並於 2020 年得到諾貝爾化學獎。技術自從被發明出來後,人們開始嘗試把它用在治療各種疾病上,不過目前尚未有 CRISPR 的基因治療通過核准。這個月中(2019/11),Dr. Charpentier 創立的瑞士的生技公司 CRISPR Therapeutics 和美國波士頓的 Vertex Pharmaceuticals 公佈了他們 CRISPR-Cas9 基因治療 CTX001 的第一、二期臨床試驗結果 [1-3]。這個試驗的兩位病患分別患有鐮刀型紅血球疾病(sickle cell disease, SCD)的乙型地中海貧血(transfusion-dependent β thalassemia, TBT),患有地中海貧血的病患在今年初開始接受治療,SCD 病患則在今年年中接受治療,而 CTX001 也在四月底時拿到用來治療 TBT 的 FDA Track Designation [4]。


Figure / β globin gene and mRNA. (G Breveglieri et al, Biomed Res Int. 2015; doi: 10.1155/2015/687635)

這兩種病是因為血紅蛋白基因突變而造成的,血紅蛋白(hemoglobin, Hb) 是由四個蛋白組成的:兩個 α-globin (HbA) 和兩個 β-globin (HbB)。TBT 是因為 HbB 突變而造成的,致病的突變有很多種,常見的突變是 β0/IVS-I-110 (G→A)(上圖紅色箭頭),是一個在 intron 裡的突變,這個突變會使 mRNA splicing 不正常(splicing mutation),無法轉譯成 HBB。如果突變是造成不正常 mRNA,無法轉譯成 HBB,導致無法組成血紅蛋白,紅血球無法運送氧氣,為 β0-thalassemia (thalassemia major)。如果突變是減少 HBB ,則是較輕微的 β+ thalassemia (thalassemia minor),這種情形是還是可以生產血紅蛋白,但是量比正常人少,但需要長期接受輸血。

註:IVS = intervening sequences,IVS1 表示在第一個 intron 裡面。


Figure / HBB IVS-I-110 (G→A) mutation (G Feriotto et al, Lab Inves 2004; doi: doi.org/10.1038/labinvest.3700106)

SCD 也是因為 HBB 突變造成,最常見的突變是 HbS,第六個氨基酸的 glutamic acid 突變成 valine (GAG → GTG):βE6V。這個突變會使血紅蛋白黏在一起,結塊在一起,如果兩個 HBB 基因都帶有這種突變的話,結塊的程度會讓紅血球變成鐮刀的形狀。

2013 年的時候,Boston Children's Hospital 和 Dana-Farber Cancer Institute 的研究團隊發現 BCL11A 控制著 HbF (fetal Hb) 的表現。HbF 是胚胎時期的血紅蛋白,和成人的 Hb 不同的地方在於它是由兩個 α-globin 和兩個 γ-globin 組成,γ-globin 則和 β-globin 相似,嬰兒出生後,血紅蛋白的 γ-globin 會被 β-globin 取代,不過有極少數人一生都會不停的生產 HbF,被稱為 hereditary persistence of fetal hemoglobin (HPFH)。有 HPFH 的人基本上都很健康,但是極少數有 HPFH 的 SCD 患者,他們的 SCD 症狀非常輕微,因此學者們就開始研究要怎麼讓 SCD 患者體內可以大讓生產 HbF。BCH 和 Dana-Farber 的研究團隊發現,成人紅血球內有大量的 BCL11A,當他們把 BCL11A 表現降低後,HbF 就會大量增加 [5]。

CTX001 治療是把造血幹細胞(hematopoietic stem cells, HSPs)抽出來,用電擊(electroporation)把 CRISPR-Cas9 送進細胞裡,利用 CRISPR-Cas9 的編輯功能阻斷 BCL11A 的表現,使紅血球能夠生成 HbF,再把編輯過後的紅血球輸回病患體內 [1, 2]。2020 年年底,他們把追蹤一年後的臨床結果發表在 NEJM。他們先是抽了十位健康個體的 CD34+ HSPs 做基因編輯,看修正率和 off-target editing 有多少。分析後的結果是修正率有 80±6%,編輯過後 HSP 的 HbF 增加了 29.0±10.8%,沒編輯過的則是 10.5±5.2%,他們也沒發現有 off-target editing 的情況。TBT 患者在治療前每年需要接受多次輸血,而在接受治療九個月後便不再需要輸血。SCD 患者在治療前每年會發生多次 vaso-occlusive crises (VOCs),在治療後便不再出現 VOCs。兩位病患在治療後觀察一年的期間內,HbF 都持續穩定的增加,雖然治療中都出現不適的情況,不過診斷過後排除是治療造成的。研究中表示,之後有六位 TBT 和兩位 SCD 患者參與 CTX001 治療,在追蹤了至少三個月後,治療效果和前兩位患者一樣。不過,雖然所有患者在治療後 HbF 持續增加,不過有件令人擔憂的事。之後在 ASH 發表其中七位的病患資料中顯示,正常的成人版 Hb 似乎有下降的趨勢,HbF 和成人版 Hb 似乎會競爭 [6, 7]。

目前這兩個臨床試驗已有超過三十位病患參與,計畫收到 45 人,然後在未來兩年內送 FDA [8]。沒意外的話,CTX001 很有可能會是第一個拿到 FDA 許可的 CRISPR 治療,Vertex 於 2021 年四月宣布和將給 CRISPR Therapeutics $900M 在研發、量產和上市上,目前兩者同意在支出和營收上,Vertex 負擔 60% 的支出和在上市後拿 60% 的營收 [8, 9]。

另外要提的是 Vertex 的在治療 TBT 上有個競爭對手 bluebird bio,它的 Zynteglo 已在 2019 年六月於歐洲上市,但是尚未拿到美國 FDA 許可。2021 年二月的時候,公司決定停止銷售 Zynteglo,因為它的另一個用來治療 SCD 的基因治療 LentiGlobin 在第一、二期臨床試驗的中,有兩位患者分別得到急性血癌(acute myeloid leukemia, AML)和骨髓增生異常綜合症(myelodysplastic syndrome, MDS),而 Zynteglo 用的 lentiviral vector 和 LentiGlobin 是相同的 [10, 11]。Zynteglo 在美國的臨床試驗先前也遭到暫停,不過六月時 FDA 讓它恢復 TBT 第三期的臨床試驗,LentiGlobin 目前也在第一、二期臨床試驗中。雖然如此,要申請 FDA 審核也要延到 2022 年年底,因此 Vertex 的 CTX001 可能搶先一步 [12]。


2023-04-05 update

Vertex 和 CRISPR Therapeutics 於本週一宣布他們已把治療鐮刀型紅血球疾病(sickle cell disease, SCD) 的 CRISPR 基因治療送 FDA 審核,此療法原本叫 CTX001,以 exa-cel 這個名稱送審,取之於 exagamglogene autotemcel。Bluebird bio 的 Zynteglo 則於去年獲得 FDA 批准,用於治療 TBT。



Clinical trials:
NCT03745287 (CLIMB SCD-121) - A Safety and Efficacy Study Evaluating CTX001 in Subjects With Severe Sickle Cell Disease
NCT03655678 (CLIMB THAL-111) - A Safety and Efficacy Study Evaluating CTX001 in Subjects With Transfusion-Dependent β-Thalassemia



Articles:

1. Science | Company claims signs of success with CRISPR-edited stem cell transplants for two genetic diseases (Nov 2019)

2. The Scientist | Early Results Are Positive for Experimental CRISPR Therapies (Nov 2019)

3. VERTEX News | CRISPR Therapeutics and Vertex Announce Positive Safety and Efficacy Data From First Two Patients Treated With Investigational CRISPR/Cas9 Gene-Editing Therapy CTX001® for Severe Hemoglobinopathies

4. GlobeNewswire | CRISPR Therapeutics and Vertex Announce FDA Fast Track Designation for CTX001 for the Treatment of Beta Thalassemia (April 2019)

5. NIH Director's Blog / A CRISPR Approach to Treating Sickle Cell (April 2019)

6. FIERCE Biotech | CRISPR, Vertex show CRISPR/Cas9 gene-editing therapy works in more patients (Nov 2020)

7. 2020 ASH | 4 Safety and Efficacy of CTX001 in Patients with Transfusion-Dependent β-Thalassemia and Sickle Cell Disease: Early Results from the Climb THAL-111 and Climb SCD-121 Studies of Autologous CRISPR-CAS9–Modified CD34+ Hematopoietic Stem and Progenitor Cells

8. Vertex | Vertex Pharmaceuticals and CRISPR Therapeutics Amend Collaboration for Development, Manufacturing and Commercialization of CTX001™ in Sickle Cell Disease and Beta Thalassemia (April 2021)

9. GEN News | Vertex Pays $900M Upfront to Lead CTX001 Development with CRISPR Therapeutics (April 2021)

10. FIERCE biotech | Bluebird bio gets FDA green light to restart sickle cell gene therapy trials after rocky few months (June 2021)

11. FIERCE Pharma | Bluebird's Zynteglo trials set to resume, putting gene therapy back on flight path to FDA filing (June 2021)

12. FIERCE Pharma | Bluebird tanks as FDA's LentiGlobin demands in sickle cell delay filing to late 2022 (Nov 2020)

13. BioPharma Dive | Vertex, CRISPR finish US filing for gene editing drug approval (2023)




Papers:

NF Olivieri, The β-Thalassemias. NEJM (1999)

Vijay G Sankaran et al, Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor BCL11A. Science (2008)

H Frangoul et al, CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. NEJM (2020)











2019年11月23日 星期六

是否可在哺乳動群中產生 gene-drive?

利用 CRISPR 造成 gene-drive 消滅散播病菌的蚊蟲,可行嗎?如果大家還有印象的話,之前有人提出利用 gene-drive 去消滅散播瘧疾的蚊蟲,但這個做法有爭議,因為這牽扯到整個物種的基因改變,是否會對生態造成影響還不知道。

三年前,UCSD 的 Gantz 和 Bier 先是研發了一個叫做 mutagenic chain reaction (MCR) 的技術,利用細胞本身的 HDR (homology-directed repair) 功能,可以有效的把生物基因體裡的一對基因都突變(homozygous mutations),使在兩個染色體上的此基因失能。這個技術主要是在一對基因的其中一個中插入了一個 Cas9-gRNA cassette 使其失能外,之後利用細胞本身的 HDR 把另一個基因也切斷並插入 Cas9-gRNA cassette,造成 homozygous mutation,使那一對基因整個失能(loss-of-function)。那要怎麼知道這個方法是否能夠有效的產生 homozygous mutation?假設果蠅本身的某對隱性基因中有一個帶有突變,也就是所謂的 heterozygous mutation,那這個突變並不會表現在外觀上(phenotype),但透過這個技術,可以有效地使果蠅轉換成一對基因的兩個都帶有突變,使這個突變表現在外觀上。並且,當這個帶有 Cas9-gRNA 的果蠅和野生果蠅交配後,產生的後代也會有 50% 的機會帶有 Cas9-gRNA cassette,使其出現 loss-of-function 的突變,隨之產生 gene-drive 的情況。

照理來說,這個技術應該可以應用在任何生物身上,不只有果蠅。於是,UCSD 的另一個團隊想在老鼠中嘗試 gene-drive,這樣就可以大量生產研究用的基改老鼠。他們讓母鼠帶有 Cas9,讓公鼠帶有 gRNA (guide RNA),交配後的後代小鼠就會帶有 Cas9 和 gRNA,並且會在不同的染色體上,因為從爸爸來的那個會帶有 gRNA,從媽媽來的則帶有 Cas9。不過這個實驗沒果蠅那麼成功,主要是在公鼠的部分,可能是因為精子會在進行 meiosis (減數分裂) 前現進行普通的 mitosis,而這時期 Cas9 造成的切口會用 NHEJ (non-homologous end joining) 來修復,而不是 HDR。另外就是 Cas8 和 gRNA 是在不同的染色體上,所以如果和野生鼠交配,就會缺少其中一個元素而無法進行突變。


Figure / S Khan et al, J Biomedical Science 2018 (doi: 10.1186/s12929-018-0425-5)


Articles:

Science / ‘Gene drive’ passes first test in mammals, speeding up inheritance in mice (July 2019)


Papers:

VM Gantz & E Bier, The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science (2015)

HA Grunwald et al, Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline. bioRxiv (2019)










2019年11月22日 星期五

狗的年齡新算法

要怎麼把狗的年紀換算成人類的年紀?

記得以前學到的是把狗的年齡乘以七,就是人類的年紀,例如狗的兩歲相當於人類的十四歲。不過呢,最近這一篇研究提供了一個新的算法,這個算法是由 DNA methylation 的程度衍化而來的。

UCSD 的基因學家 Trey Ideker 和他的同事們分析了一百多隻拉布拉多的 DNA methylation 的情況,從四週大到十六歲,發現人類和狗的 methylation 情況都和年齡相關,尤其在某些和發育(development)相關的基因上,DNA methlyation 的情況隨著老化而改變。當把年輕狗和年輕人或是老狗和老人的 methylation 相比較後,發現年輕狗和年輕人的 methylation 程度相似、老狗和老人的相似,而且也符合生理發展上的特徵,例如七週大的小狗和九個月大的嬰兒在 methylation 的程度上相似,而兩者在生理上也都處於正要長牙的階段。

他們由分析的結果得出了一個新的算式,這個算式符合了拉布拉多和人類的平均壽命:拉布拉多的十二歲和人類的七十歲。
canine’s human age = 16 ln(dog age) + 31

也就是狗的一歲,換成人的話就是 31 歲。
canine's human age = 16 * ln(1) + 31 = 16 * 0 + 31 = 31

Dog --> Human
1 --> 31
2 --> 42.1
3 --> 48.6
4 --> 53.2
5 --> 56.8
6 --> 59.7
7 --> 62.1
8 --> 64.3
9 --> 66.2
10 --> 67.8
11 --> 69.4
12 --> 70.8
13 --> 72
14 --> 73.2
15 --> 74.3

目前這個研究團隊有一個新的計劃 Dog Aging Project,是研究狗的老化,包括除了拉布拉多以外的品種,如果有養狗人士有興趣,可以和他們合作,把狗的口水寄給他們研究。



Article:
Science / Here’s a better way to convert dog years to human years, scientists say (Nov 2019)


Paper:
T Wang et al, Quantitative translation of dog-to-human aging by conserved remodeling of epigenetic networks. bioRxiv (2019)